Space Fan: A Mechanical De-Orbiting Device System for Satellites

Mehmet Şevket Uludağ
Boğac Karabulut

Istanbul Technical University

Soner Baloğlu
Barış Altun
Aeronautics and Space Technologies Institute
First Iteration
First Iteration

First Iteration performance Values
Area : 0,345 m²
Satellite lifetime 560 days

New Design
Area : 0,6285 m²
Satellite Lifetime : 504 days
Advantage : more solar panels
Deployment Mechanism

- Interface PCB
- Opening Control Switch
- Multiple springs
- 10 ohm, 5 V for 30 seconds, less than 50mW, 75 Joule
Opening Sequence
Opening Sequence
Opening Sequence
Folding of Sail

- Thickness of the kapton is 0.125 mm *
- Folding like hand fans

<table>
<thead>
<tr>
<th>Radius</th>
<th>Circumference</th>
<th>Height of Folding</th>
<th>Folding Number</th>
<th>Total Folding Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>94,25</td>
<td>1,8</td>
<td>47,12</td>
<td>0,58</td>
</tr>
</tbody>
</table>

Mechanical Properties
Mechanical Properties

- 12 grams for opening rots
- 10 grams for springs
- 8 grams Resistor + Kapton + Melting Wire

- Total Mass = 60 gr
- Cost 500 – 1000 $
Mechanical Properties

- 98.4 mm Structure
- 5.6 mm Panel + Opening Mechanism
 Thickness (one side)

- Allowable space is 9.5 mm from structure to outwards
ISIPOD CubeSat Deployer

The Maximum Advised Available Clearance for CubeSat Antenna’s and/or Baffles, etc is: 9.0 [mm]
(on all: Y+, Y-, X+, X- sides)

The Total Maximum Advised Available Volume is:
L x W x H = 340.5 x 88.0 x 9.0 [mm]

Pusher Plate has access volume available for CubeSats;
(Maximum) Dimensions: 174.8 [mm], depth 46.0 [mm]

The ISPOD inner walls are flat, this applies to all four walls.
They do not contain any obstructions/edges/etc. and can be
safely used to hold deployables.
(In this specific case one car exceed the above mentioned
maximum advised available clearances, up to the total 10.0 [mm])

The need switches activation magnets are positioned below
the pusher plate.

POM Interface to CubeSat feet
☐ 10x10 [mm]

The Guide Rolls are Hard Anodized Aluminum components.
Outer dimensions are ☐ 15x15 [mm] with a cut out of ☐ 5x5 [mm]
Rolls Width = 1.5 [mm]

Guide Rolls to Launch Vehicle
(2x Y- Side)

Guide Rolls
(2x Y+ Side)
Analysis Configurations

Case A

Case C

Case D
Analysis Results

<table>
<thead>
<tr>
<th></th>
<th>Case A</th>
<th>Case B</th>
<th>Case C</th>
<th>Case D</th>
<th>Case E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CubeSat Mass [kg]</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Drag Area [m2]</td>
<td>0.01</td>
<td>0.03</td>
<td>0.0633</td>
<td>0.6285</td>
<td>0.5627</td>
</tr>
<tr>
<td>Altitude [km]</td>
<td>552</td>
<td>552</td>
<td>552</td>
<td>552</td>
<td>552</td>
</tr>
<tr>
<td>Attitude Control</td>
<td>3 axis</td>
<td>Random</td>
<td>3 axis</td>
<td>3 axis</td>
<td>Pas. Aero. Stab.</td>
</tr>
<tr>
<td>De-orbit Date</td>
<td>3 Agu 2023</td>
<td>27 Jul 2021</td>
<td>7 Mar 2020</td>
<td>16 Apr 2021</td>
<td></td>
</tr>
<tr>
<td>Flight Time</td>
<td>+30 years</td>
<td>1748</td>
<td>1011</td>
<td>504</td>
<td>513</td>
</tr>
</tbody>
</table>
Passive Aerodynamic Stabilization

Design helps passive aerodynamic stabilization. It's possible to stabilize the satellite with about 15 degree pointing error at each axis with passive aerodynamic stabilization.*

*An Attitude Control System for ZA-AeroSat subject to significant Aerodynamics Disturbances Willem H. Steyn, Mike Alec Kearney
Advantages

• Simplicity
• Cheap
• Not wasting space
• Applicable with COTS launch pods
Disadvantages

• Deployment mechanism spring*
• Solar panel deployment mechanism is needed $$$

*%2 change in modules loss for each 55 degree change

Space Vehicle Mechanisms: Elements of Successful Design
Page:148
Thank You For Your Attention