De-orbiting Strategies

WH Steyn
whsteyn@sun.ac.za
Participant in FP7 EU projects

- **DeOrbitSail:**
 - Coordinator: Surrey Space Centre (SSC)
 - SU contributing the ADCS of 3U CubeSat
 - Launch date July 2015
 - Project Aims:
 - Deploy 16m² drag sail at 600 km
 - Do active attitude control for maximum aerodynamic drag during de-orbiting

- **RemoveDebris:**
 - Coordinator: Surrey Space Centre (SSC)
 - SU contributing the ADCS for DebrisSats (2 x 2U CubeSats)
 - Launch date possibly in 2017
 - Project Aims:
 - Chaser microsatellite release 2 Debris CubeSats
 - Demonstrate automatic removal using net and harpoon to capture “debris”
 - De-orbit “debris” using inflatable balloon & tether
Why De-orbit ? (Orbital Debris)

- Abandoned satellites and rocket upper stages litter the environment around Earth
- Increased probability of collisions in Earth orbit
- Uncontrolled growth of Earth orbiting population risks the safety of future operations
- Collisions have already occurred:
 - 1996: Cerise satellite & Ariane rocket stage
 - 2007: Chinese rocket destroyed a satellite (produced ≈ 150 000 fragments > 1 cm)
 - 2009: Iridium satellite & Cosmos 2251 (produced ≈ 61 000 fragments > 1 cm)
- Increase in debris fragments can start an uncontrolled cascade effect
- ≈ 370 000 pieces of junk (> 1 cm) and only ≈ 1 100 satellites in LEO
Orbital Debris Distribution

- Largest portion (2/3) of orbital debris is concentrated in LEO
- Only 6% of Earth orbiting objects are operational payloads
- LEO altitude distribution shows peak at 780km
Orbit Debris Predictions

- Euroconsult forecast for next 10 years shows: 400 out of 1200 anticipated launches will be in LEO – this forecast only includes satellites > 50kg

- NASA LEGEND study predicts non-linear growth for LEO region, if no mitigation is followed

- To have a sustainable LEO population requires: Implementation of commonly adopted mitigation measures (PMD – Post Mission Disposal)

- Active Debris Removal (ADR) of 5 large objects or more per year
De-orbiting Solutions

- Many proposed solutions:
 - Chemical propulsion
 - Electric propulsion
 - Electrodynamc tethers
 - Drag augmentation

- **DeOrbitSail**: A de-orbiting device that uses aerodynamic drag pressure force for de-orbiting
 - Low complexity and low parasitic mass
 - Does not require any propellant

MIR re-entry: 23 March 2001
Space Sailing history

- **Jaxa Ikaros**
 - 200 m² sail deployed in June 2010 enroute towards Venus
 - 2 RPM spin stabilised
 - LCD panels adjust reflectance to control spin vector

- **Nanosail-D2**
 - 3U Cubesat with 10 m² sail deployed in Jan 2011
 - Passively stabilised using drag force in 650 km LEO
 - Use sail drag force to de-orbit
Nanosail-D2 de-orbiting

- 10 m² Sail deployed on 19th Jan 2011
- Orbit life since deployment: 240 days
- Re-entry date: 17th Sept 2011
DeorbitSail Mission Concept

- De-orbit using aerodynamic drag
 - Increased drag area shortens time for orbit to decay

\[F_{drag} = 0.5 \rho A C_d |v_{rel}|^2 \]

- De-orbit using solar radiation pressure
 - Can be used to manoeuvre to higher or lower orbits
Phase 1: Increase orbit eccentricity to reach atmosphere through SRP and J_2.

Phase 2: Decrease orbital energy until final decay through aerodynamic drag.
MMA’s Dragnet
2.6 kg, 14 m²
Electrodynamic Tether De-orbit