Open-source Space Exploration

Kimura, Pelletier, Arai & Saieed
Hodoyoshi.org
~hodoyoshi software development kit~
Hodoyoshi SDK

- Sensor
  - NSAS
  - STT
  - GYRO
  - etc

- Actuator
  - RW
  - MTQ
  - etc

- Environmental Simulator
- Orbital Simulator

- Sensor Controller
- Actuator Controller

- I/F Driver

- OBC

- AOCS Software

Eclipseプラグイン Ver1.2.4
Main Page

UVic ECOSat is a satellite being design and built by student run team at the University of Victoria.

Pages

Ecosat-2 (SVN://ECOSAT3.ENGR.uvic.ca/svnrepos)
- Subsystems
- Analysis
- Structure
- Testing and Integration
- Ground Station

Other
- Acronyms
- Tutorials
- Website

Wiki creation help.
Consult the User's Guide for information on using the wiki software.

- Configuration settings list
- MediaWiki FAQ
- MediaWiki release mailing list
- Localise MediaWiki for your language

To edit this wiki, create an account then email Spencer Davis at sbd@uvic.ca with your username.
Test and Population Plan for Battery Boards

This is a short guide to follow when populating and testing the battery boards. When soldering only use approved solder and soldering paste, 63%/37% Sn/Pb, to avoid any tin whiskers when in vacuum. For a more detailed overview on soldering please refer to the Soldering Flight Hardware.

1. Solder 5V regulation components
   1. Test voltage regulation
2. Solder ADC chip, proper chip select 0 ohm resistor and Vcc capacitor
   1. Test ADC chip connections to power and ground
   2. Test ADC chip using SPI protocols found in the datasheet
3. Solder all relays and corresponding components resistors
   1. Test each relay connection
   2. Using SPI commands from the ADC test functions of the relay
4. Starting from bus connector side of board solder ONLY batteries B1 and B7 (be sure to use proper orientation)
   1. Test connection of B1 and B7 batteries
5. Place thermal sensors J3 and J4 in position
   1. With J3's sensor facing B1 and using epoxy, fix it to B1
   2. Repeat with J4 and B5
   3. Solder J3 and J4
   4. Test J3 and J4 using SPI commands from the ADC (or probe Vout of sensors)
6. Solder B2 and B6 (be sure to use proper orientation)
   1. Test connection of B2 and B6 batteries
7. Solder B4 and B8 (be sure to use proper orientation)
   1. Test connection of B4 and B8 batteries
8. Place thermal sensors J1 and J2 in position
   1. With J1's sensor facing B4 and using epoxy, fix it to B4
   2. Repeat with J2 and B8
   3. Solder J1 and J2
   4. Test J1 and J2 using SPI commands from the ADC
Hiroshi Yamaguchi / mbed-workshop-cansat-examples

Last commit 10 May 2012

Description: mbed workshop intro + cansat examples

Files at revision 0:f309f06aeeec7

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[up]</td>
<td>354</td>
<td>Revisions</td>
</tr>
<tr>
<td>Accel1.cpp</td>
<td>512</td>
<td>Revisions</td>
</tr>
<tr>
<td>Accel2.cpp</td>
<td>323</td>
<td>Revisions</td>
</tr>
</tbody>
</table>
We propose a portal to enable...

1. Exchange of experience.
2. Collaboration among different space tech researchers & entities
3. Networking people
Portal X - Functions

- Links to source codes & hardware schematics
- Wiki page for different projects
- Reviews & Reports of different open-source tools
- Forums / Mailing-list / FAQs
Extension to CanSat Info Center Website?
Extension to CanSat Info Center Website?

Maybe!