Group 4: Successfully launching university satellites: From design to orbit

3rd UNISEC Global Meeting
July 04, Tokyo, Japan
Goals for Discussion

Results:

- There is a huge variety in the university satellite missions, each struggling with different technologic issues
- Problems related to student participation are similar
 - High fluctuation
 - Students have to complete their courses rather than participate in a long term project such as a CubeSat
 - Sometimes little commitment/responsibility
- Budgetary constraints are inherent
- Launch Delays cannot be avoided but measures to prepare for them
- Even educational satellites face the need for a return of investment
How to react to high student fluctuation?

- Best practice handbook
- Have a standard system, because then students can keep working continuously on the project
- Small progress reports (every week or month) rather than big documentations to write down the progress
- Education of project managers by UNISEC (like CanSat leader program)
- CubeSat for Dummies. How to build a CubeSat and the relevant test equipment
- Template for Project management?
- Concise documentation but more than Bachelor/Master Thesis
How to react to budgetary constraints?

• You can rent hardware instead of building several models
• Private companies fund very little, but sometimes it is possible. Most feasible help by private sector are kind contributions.
• Involve other students (law, marketing, finances, …)
• Can we be funded by military? Very common way of funding in the US...
• Public-private partnership: difficult but worth trying. Inherent conflicts to this concepts though.
• Collaborations for test facilities could decrease costs by a lot!
How to react to Launch delays

• Take on a new student “to sit and wait” not really possible, therefore: hire the people if possible?

• Design your system to be accessible for the case that there are launch delays. You can work on the software, recruit new students, etc…
Testing

- Hardware-in-the-loop tests
- Standardize test equipment to exchange it
- Standardize test procedures? Common hardware-in-the-loop protocols/procedures could help
Cooperation between Universities

- Bundle test equipment
- Bundle ITU, legal issues
- Exchange lessons learned, also informal if possible
- Collaboration vs. competition:
 - “Competition for quality” not for how many satellites have been launched
 - Contradiction if competing for money/funding
 - Collaboration/competition on different topics possible
Project Planning

- Give small projects to students
- Continuous education <-> defined project timelines
- Cooperation with other universities while there is a shortage in resources (satellite, ground station, ...)
- Start planning the next mission while working on the current
- Plan in money for times after the mission
- Create credibility for long term project
 - Agencies should have two tracks: based on credibility vs. based on innovation
- Sustainable long term programs are necessary
How to face regulatory issues?

• Special procedures for University programs (ITU)
• No single point of contact to talk on behalf the universities to the ITU -> would be helpful!
• Frequency bands dedicated to university projects
• Those issues can only partially be handled by students because they take too long and need officially be handled (signed)
• Inclusion of other students (e.g. law) could help and also the students could benefit
How to deal with failures?

- Problem facing the truth and to do correct failure analysis because of funding for the next project would get complicated
- Lessons learned is the most important outcome of an educational project
- Offer informal meetings to discuss failure causes
- Very dependent on cultural and personal tendencies