Group No.8
How Small Satellites Can Comply with the Space Debris Mitigation Guidelines?

Koki Sakuyama
Tokyo Metropolitan University, Tokyo, Japan
Background

The United Nations developed 7 recommended guidelines for limiting space debris generation.

This group focused on Guideline 3 and Guideline 6.

- **Guideline 3 limits the probability of accidental collision in orbit.** Therefore, the probability of accidental collision with known objects during the system’s launch phase and orbital lifetime should be estimated and limited.

- **Guideline 6 limits the long-term presence of spacecraft and launch vehicle orbital stages in the low-Earth orbit (LEO) region after the end of their mission.** Therefore, spacecraft and launch vehicle orbital stages that have terminated their operational phases in orbits that pass through the LEO region should be removed from orbit in a controlled fashion.
Guideline 6 is known as the 25-year rule which limits orbital lifetime within 25 years.

I was surprised that 25-year rule does exist.

I would like to share fruitful knowledge that I obtained through the discussion group.
Criterion for the 25-year Rule

Image explanation:
- The graph illustrates the area-to-mass ratio (A/m) in m²/kg against altitude in km.
- The x-axis represents altitude ranging from 200 km to 2000 km.
- The y-axis shows the area-to-mass ratio ranging from 0.0001 to 100.
- The shaded area represents the area-to-mass ratio range for CubeSat at 700 km altitude, which is below 0.026 m²/kg. This indicates compliance with the criteria for the 25-year rule.
- The graph also shows that altitudes above 700 km, represented by the line, require an area-to-mass ratio above 0.026 m²/kg to comply with the 25-year rule.
We need to do some activities for long-term sustainability of outer space activities.

Suggestion

We supposed that making WG which share the knowledge because we need better understanding of the current space debris environment and the Guideline.
Background and Motivation

- Space Debris Mitigation Guidelines of the Inter-Agency Space Debris Coordination Committee
- Space Debris Mitigation Guidelines of the Scientific and Technical Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space
 - Guideline 3 limits the probability of accidental collision in orbit
 - Guideline 6 limits the long-term presence of spacecraft and launch vehicle orbital stages in the low-Earth orbit region after the end of their mission
- The scope of group discussion includes but is not limited to
 - A better understanding of the current space debris environment,
 - Ideas how to comply with the guidelines, and
 - Ideas how to minimize impact of small satellites insertion on the future space debris environment
Criterion for the 25-year Rule

Area-to-mass Ratio Range

< 25 years

> 25 years

0.026 m²/kg

700 km

Altitude [km]
Scope of Group Discussion

The scope of group discussion includes but is not limited to:
- A better understanding of the current space debris environment,
- Ideas how to comply with the guidelines, and
- Ideas how to minimize impact of small satellites insertion on the future space debris environment.
Options Applicable for Small Satellites @ 700 km Alt.

In order to have an area-to-mass ratio > 0.026 m²/kg

1. Limit their mass: < 14.4 kg for a cube 50 cm on a side
 (Note: satellite frame ~ 1.1 kg)

2. Enlarge their average cross-sectional area at the beginning or the end of their mission: > 1.3 m² for a mass of 50 kg
 (Note: average cross-sectional area of a cube 50 cm on a side ~ 0.4 m²)

Therefore,

- Option 1 seems to be nearly impossible
- Option 2 seems to be quite possible but may conflict with Guideline 3
Assumptions to Discuss Guideline 3 for Small Satellites

- LEODEEM, an orbital debris evolutionary model for the low-Earth orbit region, used for this study
 - Initial population includes all > 10 cm objects with perigee altitudes < 2000 km on 1 Jan. 2009
 - Orbital insertion history for the years 2001 through 2008 for > 10 cm objects with perigee altitudes < 2000 km repeated as the 8-year traffic cycle

- Sun-synchronous orbit at 700 km alt. with an inclination of 98.2 deg.

- A small satellite with a mass of 50 kg in a cube 50 cm on a side
 - Average cross-sectional area ~ 0.4 m²
 - Area-to-mass ratio ~ 0.008 m²/kg
Cumulative Probability of Accidental Collision

- Cumulative probability for $A/m = 0.008$ [m2/kg]
- Cumulative probability for $A/m = 0.026$ [m2/kg]

Time intervals:
- 25 years
- 82 years
Cumulative Probability of Accidental Collision

Orbital lifetime [year]

Cumulative probability of collision [%]

A/m [×10⁻³ m²/kg]
Concluding Remarks

- This paper concerns about how small satellites can comply with Guideline 6 or the 25-year rule

- This paper compares two options applicable for small satellites to limit their orbital lifetime within 25 years

- Enlargement of their average cross-sectional area may be a quite promising option

- This paper also concerns that the promising option may conflict with Guideline 3

- This paper clearly demonstrates:
 - the promising option raises the probability of accidental collision, but
 - the 25-year rule can reasonably and adequately reduce the cumulative probability of accidental collision at the re-entry