Water Quality Management and Micro/nano/pico-satellites

Team 2
University of Tokyo

CanSat & Rocket Experiment (‘99～)

Hodoyoshi-1 ‘14

PRISM ‘09

CubeSat 03,05

Nano-JASMINE ‘15
“Store & Forward” gets ground information

- UHF receiver onboard Hodoyohi-3 & 4 can collect data from ground Sensor Network (fixed points or mobile)

S&F mission outline

1. Fixed or mobile sensors on the earth get ground information and transmit them to Hodoyoshi-3&4 when they fly over the area
2. Hodoyoshi 3&4 receive and store the information, and forward (transmit) it to Ground Stations when it flies over them

Example)

Application areas: disaster prediction, water level/quality monitoring, forest/agriculture data acquisition, sea information collection, environmental data acquisition, etc.
How about making 1U or 2U satellites by many countries so that we have more opportunities to send the data to satellites?

The country who provides one satellite can use all the satellites for data collection.

Water quality monitoring is the first candidate, but other applications should also be pursued.
Specifications of transmitter from ground

i. RF power and input power, data rate, size of antenna, transmission intervals, etc.

- Considering “water quality management” mission
- Water Quality Sensor is not chosen yet (TBD)
- These factors will be decided after sensor/data are decided
Technological Issues (2)

Overall systems architecture

i. How to deal with transmission “collisions”?
 ➢ CDMA, FDMA, TDMA? ---- FDMA is suitable

ii. How the transmitter knows satellites’ coming?
 i. Beacon from satellite trigger transmission
 i. Ground receiver maybe turned on and off to reduce power consumption
 ii. Time based (clock error should be considered)
 iii. Transmitter turned on and off periodically
 i. Find suitable ON-OFF timing sequence
 iv. Hybrid (receiver ON just before satellite in vision)
 v. Future: Wireless power from satellite to the sensor, and trigger the sensor to transmit the signal back

iii. License of frequency usage: should be checked
Technological Issues (3)

Downlink from satellites

i. Ground station concept, number, frequency (UHF or S Band) and Cost & Performance should be traded off

ii. Collaborate with “Infosteller”

iii. Experimental frequency would be adequate

iv. Data storage and sharing way should be designed

v. Downlink radio transmitter should be standardize, housekeeping data also into standardized packets

vi. Encryption of data (example. Spain data to Ghana)

vii. Decided based on cost factor, either S Band or UHF

viii. Some countries can participate only with providing Ground Stations.

ix. Mass production and order of GS may reduce cost
Design of ground sensor/transmitter system
(Assuming 6 months without maintenance)

i. Power: Solar cell? Screw? Wind mil?
 i. If used in river, use screw but requires maintenance
 ii. Solar cell is suitable due to less maintenance
 iii. Location based solution

ii. Antenna:
 i. Should be decided considering
 i. Coverage requirement
 ii. Communication speed
 iii. Communication frequency
 iv. User distribution
 v. Candidates: Omni, patch, horn, helical antenna

iii. Standard interface for various sensors
 i. Serial communication would be adequate

Other possible applications

Water quality monitoring device
i. Should be small, cheap and low power
ii. Endurable for long time
iii. Accuracy requirement (specification)
iv. Application dependent (level, chemical, pH, heavy metal, oil detection, temperature, application selection based on user needs)

Possible information source Tunisian University (Monastir), ANU, mailing list from Rei

What kind of sensors can be used?
Technological Issues (5)

Water quality monitoring device

i. Should be small, cheap and low power
ii. Endurable for long time
iii. Accuracy requirement (specification)
iv. Application dependent (level, chemical, pH, heavy metal, oil detection, temperature, application selection based on user needs)
v. Possible information sources: Tunisian University (Monastir), ANU, mailing list from Rei (UNISEC)

Other possible applications

i. Each member should study other possibilities
Who (what organization) will lead this international collaboration?

- Conceptual study (feasibility study, plan generation, etc) should be lead by Mr. Rakesh Chandra Prajapati
- UNISEC providing info to students to participate in the project
- Team with geological scientist to find the user requirement (saves time to find the mission or application)
- Strong will and sustainable long-time effort are required as many issues should be solved
Funding for the system development and operation

- Benefit to human being may appeal to ADB, WB or other banks or JICA (Japan)
- Connect with Hydro power (fund)

Launch opportunity

- May appeal to some governments to get opportunity such as Japanese H-IIA/ISS launch
- Contact for KiboCube
- Epsilon should be also contacted (to IHI person)
Timeline and Action Items

First milestone is a meeting in ISTS (June, 2017). Until then, we should:

– Work for 6 months
– Collect info, collect regions, people
– Find someone with Water quality knowhow
– Keep email contacts informed

Meeting on June 3 to 9, 2017 in ISTS (with Skype with those who cannot come)

• At the meeting, we will define next phase work, discuss project feasibility
Weak Signal Receiver for Data Collection Capability

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit rate</td>
<td>100 bps, maximum 8 channels in parallel</td>
</tr>
<tr>
<td>Transmission duration</td>
<td>< 300 sec</td>
</tr>
<tr>
<td>Transmission power from ground</td>
<td>20 mW</td>
</tr>
<tr>
<td>Frequency band</td>
<td>920 MHz (no license of usage is required if using 20mW power)</td>
</tr>
</tbody>
</table>

Will be used as common receiver which will be distributed with cheap price.
<table>
<thead>
<tr>
<th>Items</th>
<th>Values</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>10x10x30cm</td>
<td>3U size</td>
</tr>
<tr>
<td>Weight</td>
<td>< 3kg</td>
<td></td>
</tr>
<tr>
<td>OBC</td>
<td>"Bocchan"board</td>
<td>Internal made</td>
</tr>
<tr>
<td>Power (average)</td>
<td>4W</td>
<td>AZUR GaAs cell</td>
</tr>
<tr>
<td>Battery</td>
<td>Li-Ion 41 wh</td>
<td>LIBM</td>
</tr>
<tr>
<td>Downlink (H/K&data)</td>
<td>1.2kbps</td>
<td>460MHz AFSK "U-TRx"</td>
</tr>
<tr>
<td>Uplink (H/K)</td>
<td>50W 9600bps</td>
<td>401MHz</td>
</tr>
<tr>
<td>Attitude</td>
<td>Simple 3 axis</td>
<td>B-dot law only</td>
</tr>
<tr>
<td>Sensor</td>
<td>magnetic sensor, gyro</td>
<td>"GNSS"</td>
</tr>
<tr>
<td></td>
<td>GPS receiver</td>
<td>"MTQ" "RW"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"CAM"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Sub-CAM"</td>
</tr>
</tbody>
</table>

Can be 2U size. Design information will be provided as a reference if needed.