Group 4: Innovative Science Produced by Nano-Satellite Observation

Moderator: Masashi Kamogawa, Tokyo Gakugei University, Japan

Assistant: Mariana Bogdanova, Sofia University

6 Participants (8 persons in total)
[4: Science background,
4: Engineering background]
Participants (Group 4)

- Masashi Kamogawa (Moderator)
- Mariana Bogdanova (Assistant)
- Hiroki Uto
- Yasuyuki Miyazaki
- Zdravko Dimitrov
- Himmat Panag
- David Lam
- Jordan Bozmarov
Our motivation

• Can Cubesat observe practical scientific data?

• Were there scientific papers using Cubesat data?

• What is the plausible missions for Cubesat?
<table>
<thead>
<tr>
<th>Type</th>
<th>Launched</th>
<th>Not launched</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25U CubeSat</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.5U CubeSat</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1U CubeSat</td>
<td></td>
<td>252</td>
<td>253</td>
</tr>
<tr>
<td>1.5U CubeSat</td>
<td>61</td>
<td>4.3%</td>
<td>65</td>
</tr>
<tr>
<td>2U CubeSat</td>
<td>114</td>
<td>8.1%</td>
<td>125</td>
</tr>
<tr>
<td>3U CubeSat</td>
<td></td>
<td>743</td>
<td>743</td>
</tr>
<tr>
<td>3.5U CubeSat</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4U CubeSat</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5U CubeSat</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6U (1x6U) CubeSat</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6U CubeSat</td>
<td>86</td>
<td>6.1%</td>
<td>94</td>
</tr>
<tr>
<td>8U CubeSat</td>
<td>3</td>
<td>0.2%</td>
<td>4</td>
</tr>
<tr>
<td>12U CubeSat</td>
<td>14</td>
<td>1.0%</td>
<td>15</td>
</tr>
<tr>
<td>16U CubeSat</td>
<td>5</td>
<td>0.4%</td>
<td>6</td>
</tr>
<tr>
<td>Other nanosats (1-10 kg)</td>
<td>66</td>
<td>4.7%</td>
<td>72</td>
</tr>
<tr>
<td>PocketQube</td>
<td>24</td>
<td>1.7%</td>
<td>26</td>
</tr>
<tr>
<td>TubeSat</td>
<td>6</td>
<td>0.4%</td>
<td>6</td>
</tr>
<tr>
<td>Other picosats (0.1-1 kg)</td>
<td>22</td>
<td>1.6%</td>
<td>22</td>
</tr>
</tbody>
</table>
It seems to easily employ ambitious missions.
Downlink of practically sampled data is available.
Recent scientific results

• Most relevant Cubesat for Science: Radio Aurora Explore (NASA-NFS / 3U)

• Ionospheric irregularities
• Energetic electron precipitation
• Space weather
What is better mission for Cubesat?

- Current Cubesat can use X-band communication.
- University and company are major developers.
- Many instruments are currently feasible for CubeSat.
- Good resolution is difficult to obtain. (in particular, camera and spectrometer)
What is feasible mission?

- Earthquake electromagnetic precursor
- Tsunami real-time monitoring
- Lunar mission (energetic particles around magnetotail, material resource)
- Animal behavior
- Microgravity, energetic charged particles, vacuum experiment for biology, material science etc.
- Radio noise temperature of passive measurement by two Cubesats (Microwave Radiometer)
Earthquake electromagnetic precursor

• Electromagnetic wave measurement
 \(\bigcirc\) Electric field, \(\times\) Magnetic field)
• In-situ plasma measurement (Langmuir probe)
• Long term observation (no interruption).
• Robust Cubesat is required.
Tsunami real-time monitoring

• Ship-GPS measurement - AIS communication
 → Ship number depends on season, weather etc.
• Ionospheric monitoring (TEC measurement)
 ⇒ Alternative method
Lunar mission
(energetic particles around magnetotail, material resource)

• Langmuir probes (magnetotail)
• Particle measurement (magnetotail)
• Spectrometer (material on the surface)
• Magnetic field (local magnetic field survey)

-> Concurrent two missions depends on space inside the satellite.
Animal behavior

1) Is anomalous behavior before the earthquake true?
2) Do animal feel magnetic field?

- Trackers embedded in the animal
- Store and forward system
- Several Cubesats are required.
Microgravity, energetic charged particles, vacuum experiment for biology, material science etc.

- Small biology probe (microscope etc.)
- Small material probe
Radio noise temperature of passive measurement by two Cubesats (Microwave Radiometer)

To create real-time map of noise temperature for the differential data.

• Antenna with very low noise temperature
• Synchronous detector
Conclusion

• Scientists push Cubesat developers to employ their scientific mission.

• Special sensors for Cubesat should be developed.

• Cubesat mission produces more data affordable for the science.