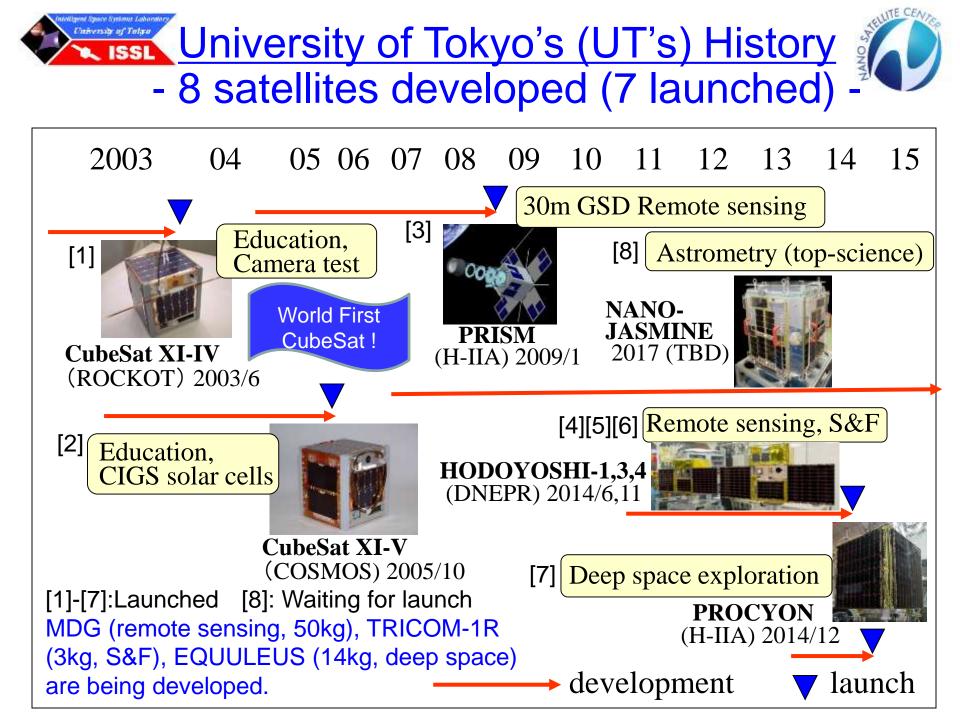
CanSat & Rocket Experiment('99~)

Hodoyoshi-1 '14

What is Important in Micro/nano/pico-satellites Development - From Engineering and Project Management Perspectives –


Shinichi Nakasuka University of Tokyo

Nano-JASMINE (TBD)

Start from simple CubeSat for educational objectives

Establishing UNISEC as University Community

1998~2010

University of Tokyo's CubeSat Project "XI"

"XI-IV" 2003.6.30 Rockot

2005.10.27 Cosmos-3M

"XI-√"

Educational Significances of CanSat/Micro/Nano/Pico-Satellite Projects

- Practical Training of Whole Cycle of Space Project
 - Mission conceptualization, satellite design, fabrication, ground test, modification, launch and operation
 - Know what is important and what is not.
- Importance for Engineering Education
 - Synthesis (not Analysis) of an really working system
 - Feedbacks from the real world to evaluate design, test, etc.
 - Learning from failures (while project cost is small)
- Education of Project Management
 - Four Managements: "Time, human resource, cost and risk"
 - Team work, conflict resolution, discussion, documentation
 - International cooperation, negotiation, mutual understanding

• Also contributions to other technology areas !

Launch of the World First CubeSat (XI-IV, etc) by "ROCKOT"

はやぶさ2

Hayabusa-2

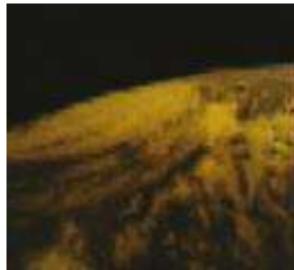
2003/06/30 18:15:26 (Ru

Contributions to human resource training is more than expected !

> CANON Satellite 2017.6.23

700+ pictures downlinked for 14+ years





XI-IV is still perfectly working after 14+ years in orbit sepia color? Recently Downlinked Photos Get older?

Degradation of lens material by ultra-violet

Key strategy to be world first CubeSat

- No components on web-site for CubeSat

 Everything should be internally-made
- No ground test facilities in our university
- We only have little money (\$50,000)
- Key strategies employed in 1st CubeSat
 - Find out and pursue what we can do within your limited resources
 - Find outside supporters (technical, part donation)
 - Make it as simple as possible (start from very simple CubeSat)
 - Implement survivability as much as possible

UNISEC supported student projects !! (UNIversity Space Engineering Consortium)

- Founded in 2002, became NPO in 2003
- 72 laboratories from 50 universities
- 892 students, 259 individual/company members
- UNISEC Missions:
 - Education and human resource training for space development/utilization
 - Innovative space technology "seeds" development
- Activities to be Supported:
 - Joint experiment, joint development, joint education, etc.
 - Workshop, symposium, technology exchange, etc.
 - Consultation on legal matters (frequency, export law, etc.)
 - Finding "rivals" within the community !
 - "UNISEC Lecture Series"

http://www.unisec.jp

University Satellites in Japan 44 university satellites launched in 2003-2016

From CanSat to CubeSat, Nano/micro-Satellite Almost all the universities have CanSat experiences !

What realized UNISEC Achievements ?

- UNISEC provided university students with platform = opportunities to observe and exchange; What other universities achieved and how, leading to
 - strong motivation (we can do something similar!!)
 - hints of achieving something (rocket, satellite, CanSat, real satellites, ---)
 - competitive ("rival") feeling (if they can do it, we can do it better !!)
- As one community, we have been negotiating with government and companies asking for their support in many aspects (technology, finance, facility, legal issues, launch opportunity, etc.)

Simple, low cost and easy starting point

= CanSat

ARLISS (A Rocket Launch for International Student Satellites)

- Annual suborbital launch experiment -
- ARLISS 1999: Sept. 11 (Japan:2, USA:2)
 - Univ.of Tokyo, Titech, Arizona State, etc.
- ARLISS 2000: July 28-29 (Japan:4, USA:3)
- ARLISS 2001: August 24-25 (Japan:5, USA:2)
- ARLISS 2002: August 2-3 (Japan:6, USA:3)
- ARLISS 2003: Sept.26-27 (Japan:6, USA:3)
- ARLISS 2004: Sept.24-25 (Japan:6, USA:3)
- ARLISS 2005: Sept.21-23 (Japan:7, USA:3)
- ARLISS 2006 Sept.20-22 (Japan:8 USA:3 Europe:1)

1 8 11 8

- ARLISS 2007 Sept.12-15 (Japan:10 USA:3 Korea:1)
- ARLISS 2008 Sept.15-20: 10th Memorial ARLISS !
- ARLISS 2016 18th (Japan: 12, USA: 2, Korea, Egypt)
- ARLISS 2017 19th Sept.13-17 (Japan:13 USA:2 Kore
- ARLISS 2018 20th Memorial !!

CLTP (CanSat education) History & Participants

1 month course "CanSat Leaders Training Program"

CLTP1 (Wakayama Univ. in Feb-March, 2011)

12 from 10 countries, namely Algeria, Australia, Egypt, Guatemala, Mexico, Nigeria, Peru, Sri Lanka, Turkey (3), Vietnam.

CLTP2 (Nihon Univ. in Nov-Dec, 2011)

10 from 10 countries, namely Indonesia, Malaysia, Nigeria, Vietnam, Ghana, Peru, Singapore, Mongolia, Thailand, Turkey.

CLTP3 (Tokyo Metropolitan Univ. in July-August, 2012)

10 from 9 countries, namely Egypt (2), Nigeria, Namibia, Turkey, Lithuania, Mongolia, Israel, Philippines, Brazil.

CLTP4 (Keio Univ. in July-August, 2013)

9 from 6 countries, namely Mexico(4), Angola, Mongolia, Philippines, Bangladesh, Japan.

CLTP5 (Hokkaido Univ. in Sept 8-19, 2014)

7 from 5 countries, namely Korea (2), Peru, Mongolia, Mexico (2), Egypt.

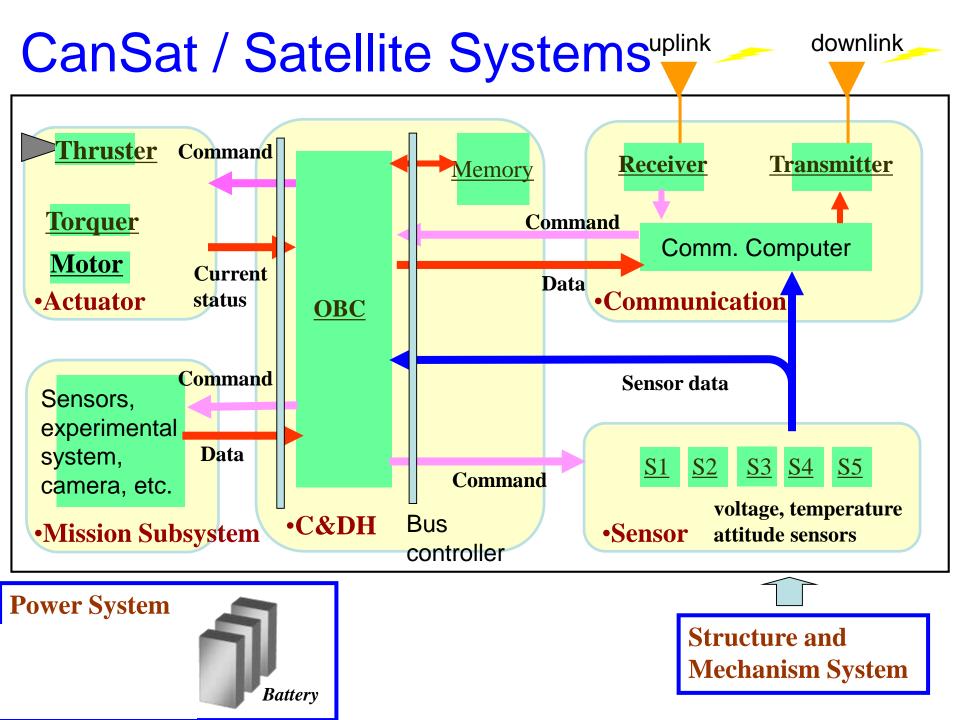
CLTP6 (Hokkaido Univ. in August 24-Sept 3, 2015)

8 from 8 countries, namely Bangladesh, Egypt, Mexico, New Zealand, Angola, Turkey, Tunisia, Austria

CLTP7 (Hokkaido Univ. in Sept 21-Oct 1, 2016)

8 from 7 countries, namely Egypt, Peru, Mongolia, Nepal, Myanmar, Serbia, Dominica Republic

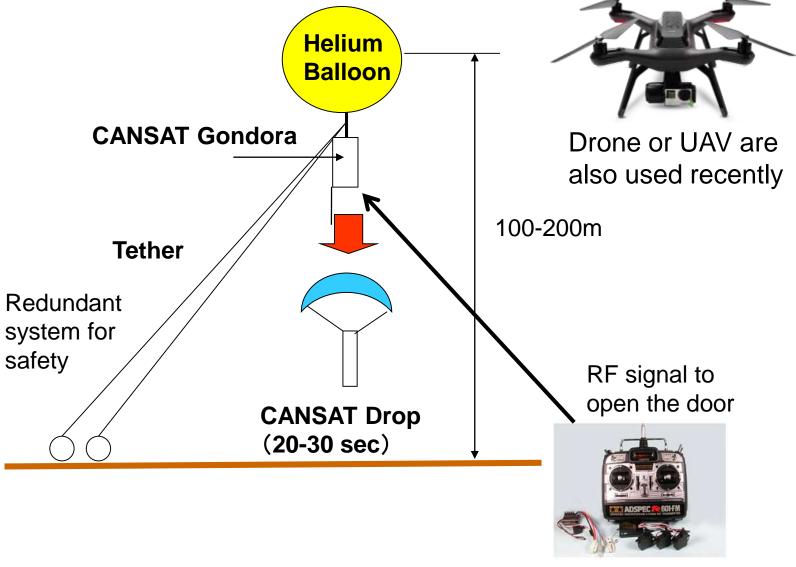
64 participants from 32 countries


Learn from Failures

Parachute part and body was separated by the shock of the deployment of the parachute

Failure should be experienced many times and fully analyzed while project size is small !

Loading to inside of rocket nose-corn



1st ARLISS Sep.1999

CanSat Deployment using Helium Balloon

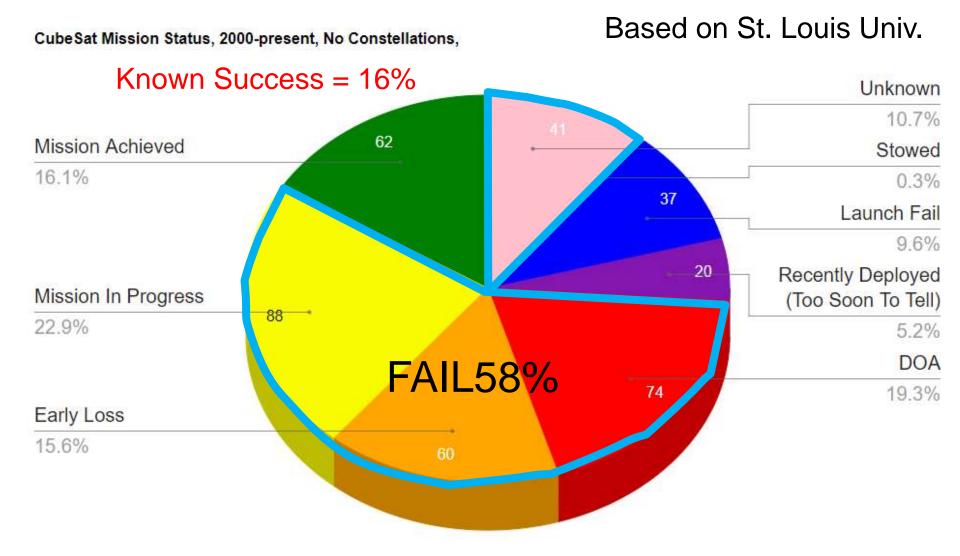
Radio controller ("propo")

Fly-backers

Kyushu Tech KINGS

Come-Back Competition 2008

Titech Str. Dynamic Lab

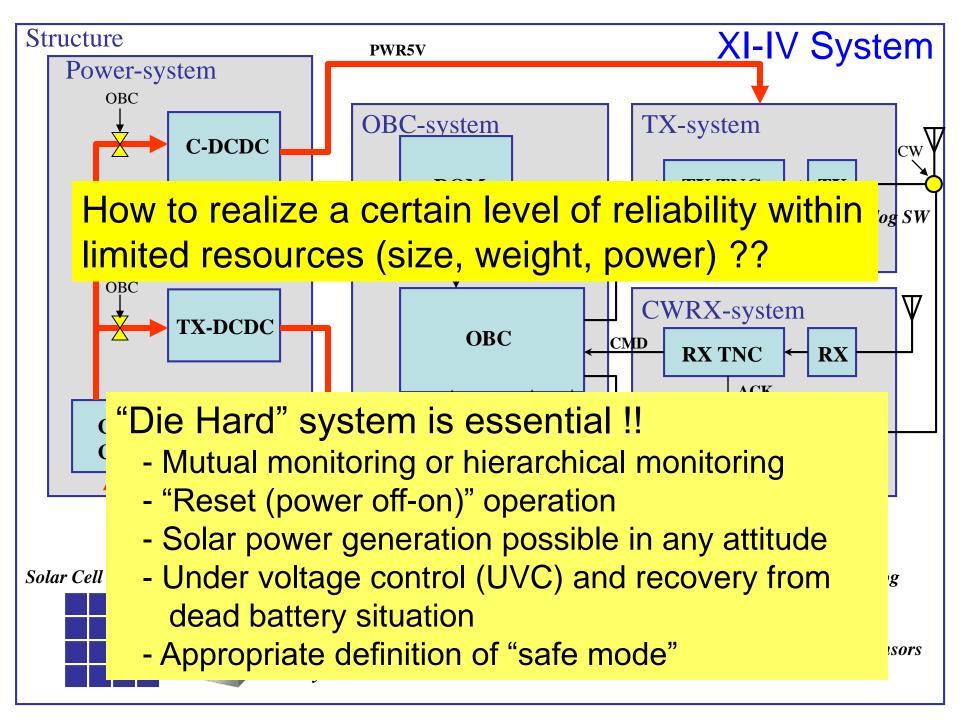

"Non-maintainable System"

 A satellite, even a CanSat cannot be contacted until the end of its mission once it is loaded on a rocket or balloon

"non-maintainable system"

- Sometimes it should survive in space for more than 10 years without any human interactions, so
- Imagine all the possible events and anomalies which may happen on Satellite or CanSat and prepare countermeasures for them
- Try as many ground test as possible in various settings to ensure normal operations of CanSat

To reduce the current CubeSat failure rate(58%)



https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database

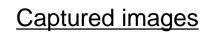
Space Environment

Vacuum	Vaporization, cold welding, friction, electric discharge, change of material, heat spot			
Radiation	Electronics parts malfunction and breakdown, Degradation of solar cells and materials			
Thermal	Large temperature differences/cycles, heat shock, heat spot			
Launch	Vibration, shock, acceleration, sound vibration			
Distance	No maintenance possible, long range communication, tracking required			

Do required tests: Standardization of Tests for Lean Satellite One month "Burn-in" after completion of your satellite

PRISM "Hitomi"

Antennae


CMOS

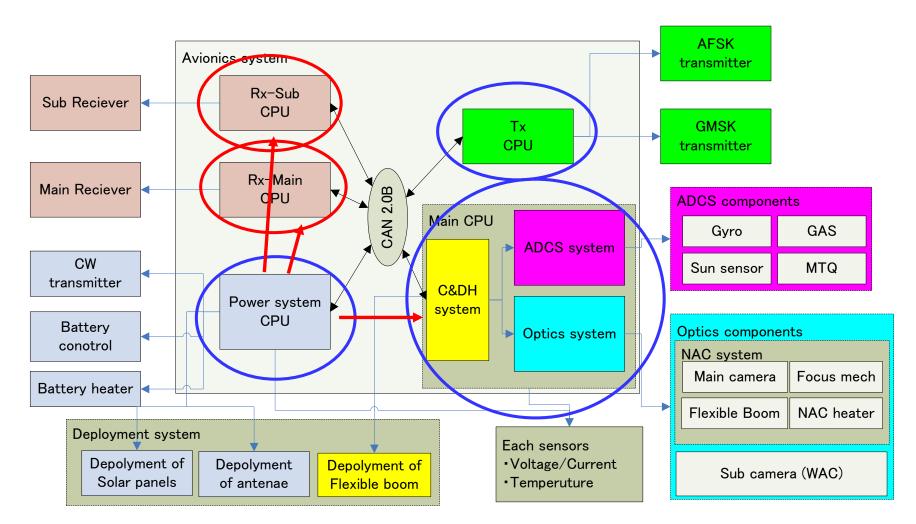
Earth Remote Sensing (20 m GSD, RGB) with Deployable Boom Mission: <u>Developer</u>: University of Tokyo

H-IIA (Jan 23, 2009) Piggyback with GOSAT (CO₂ monitoring sat) Launch:

-	Size	20x20x40[cm] in rocket	1/1/1/ 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/
		20x20x80[cm] in space	Lens
	Weight	8.5 [kg]	// · · · /
	Attitude control	3-axis stabilization with	
		Sun, Magnet sensor, MEMS gyro magnetic torquers	
	OBC	SH2, H8 x 2, PIC x 2	1
	Communication	VHF/UHF (max 9600bps)	Flexible telescope
	Mission life	> 2.5 years	

Mexico Seashore

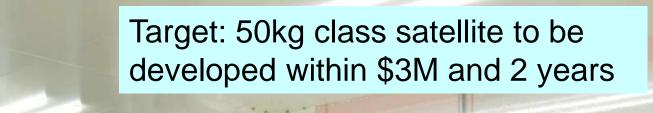
US Desert


Solar cell panels

Kita-Kyushu (Japan)

Wide Angle Camera

PRISM System Diagram



Combination of "High performance but may-be-weak" processor and "Low performance but very robust and proven" processor

Step up to practical applications

2010~

Hodoyoshi-3 (left) and Hodoyoshi-4 before Shipment (April, 2014)

Size:50x50x80cm 60kg Downlink: 10Mbps Power: max 100W average 50W <u>Attitude Control Capability:</u>

0.08 deg/s (Roll, Pitch)

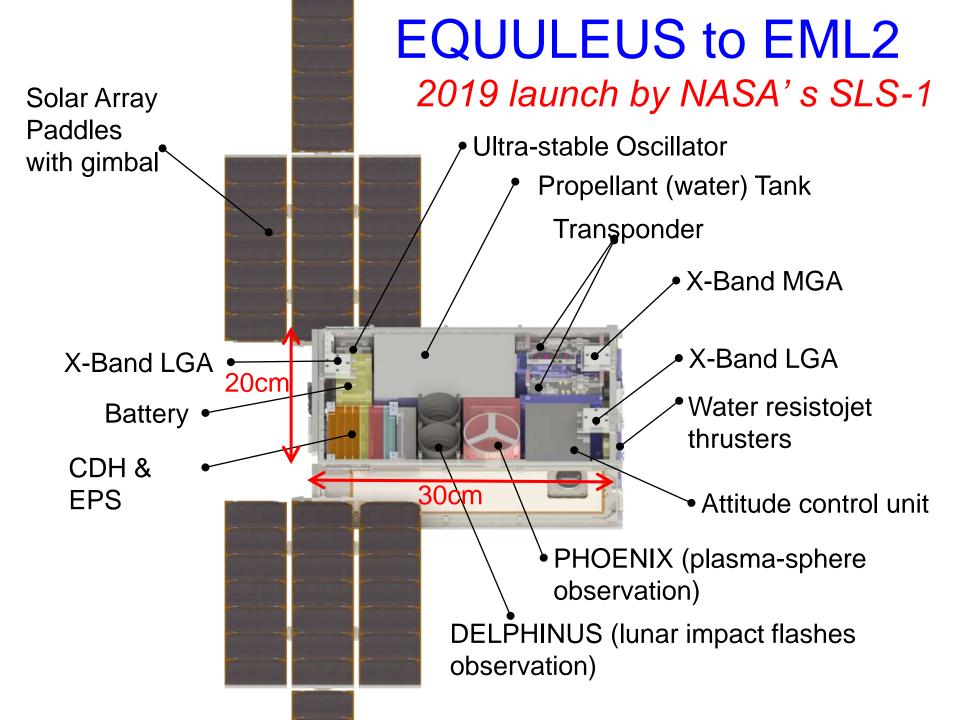
0.2 deg

- Stability
- Pointing accuracy
- Determination accuracy 0.0048 deg

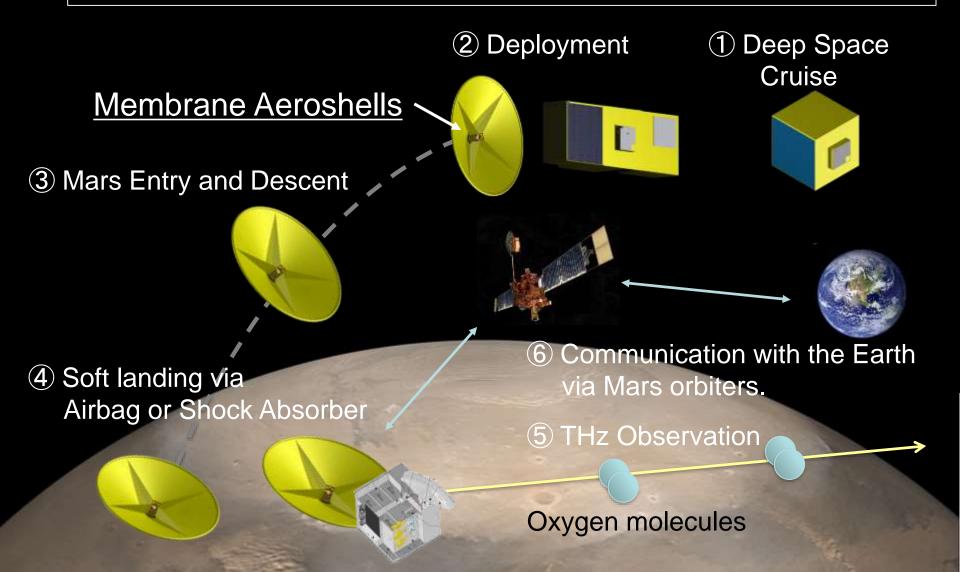
0.8 deg/s (Yaw) 2 deg 0.048 deg

Sri Lanka (LCAM 240m GSD)

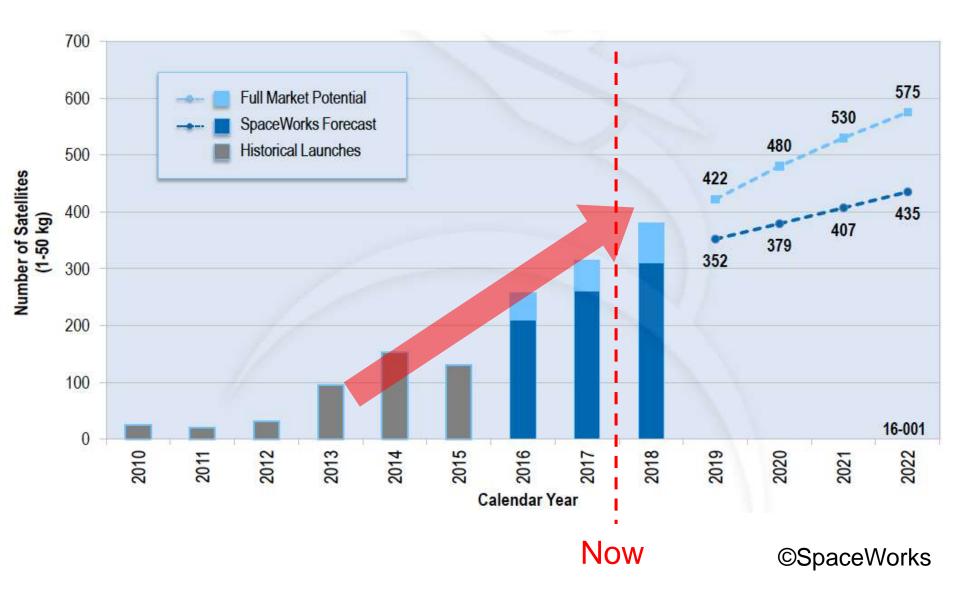
Dubai (6.7mGSD)


2

50kg-class deep space probe "PROCYON"

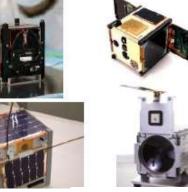

(PROCYON: <u>PRoximate Object Close flY</u>by with Optical Navigation)

Developer: Univ. of Tokyo and JAXA (Japan Aerospace Exploration Agency) Launch: H2A rocket (together with Hay Hayabusa-2 Mission: Demo. of 50kg deep space ex Asteroid flyby observation (ad flyby #2 (TBD) flvbv #1 (2016/01~) flyby # (TBD) Flyb > a PROCYON



Mars Micro-Lander Project Just Started

NICT, University of Tokyo, et. al. started preliminary design. Size: 70-100kg Planned launch date in July 2022



Growing trend of < 50kg satellites

Innovative utilizations of Micro/nano/pico satellites

NDC-OK

AAReST

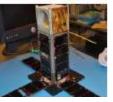
Education Remote sensing Telescope

OPUSAT(1U:1kg) XI-IV(1U:1kg)

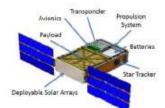
Rendezvous/

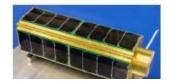
docking

INSPIRE(3U)


AeroCube(1.5U:2kg) Dove,Flock (3U:4kg)

Communication

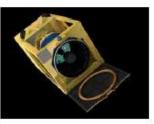

高速通信·ISARA(3U)


低速通信·AISSAT-1(6kg)

Weather MiRaTA(3U) MicroMAS(3U)

Bio-engineering BioSentinel計画案(6U) SPORESAT(3U:5.5kg)

Exploration


LWaDi(6U)

CAT(3U)

Re-entry 再突入回収(3U) Sunjammer

High Resolution.

SCOUT(50kg) Skysat(120kg)

Atmosphere

(可視·近赤外)

NEMO-AM(15kg)

Space Science

RACE(3U)

FS-7(3U)

"Game Change" by "Lean" Satellites

• Very low cost (>200M\$ \rightarrow <5M\$)

– Leads to new missions, business, space sciences, Make the most of these merits of micro/nano/pico-satellites.

Do not develop them "like big satellites."

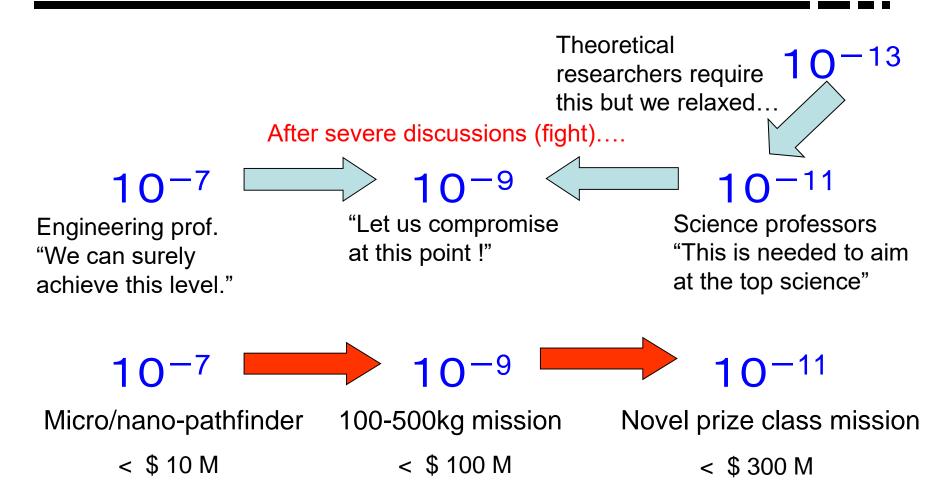
Focus on dedicated one or two missions and find appropriate mission level !!

- Simple and transparent satellite system
 - Easy to design, operate and do trouble shooting
 - Development members can see the total system

Nano-JASMINE


Mission: Astrometry (Getting precise 3D map of stars and their movements) <u>Developer</u>: University of Tokyo, National Astronomical Observatory of Japan, Shinshu University, Kyoto University

Launch:


Size	50 [cm-cubic]		
Weight	37 [kg]		
Attitude control	3-axis stabilization with		
	Star, Sun, Magnet sensor, FOG,		
	RW, Magnetic torquers		
OBC	FPGA		
Communication	S-band 100 [kbps]		
Mission life	2 [year]		

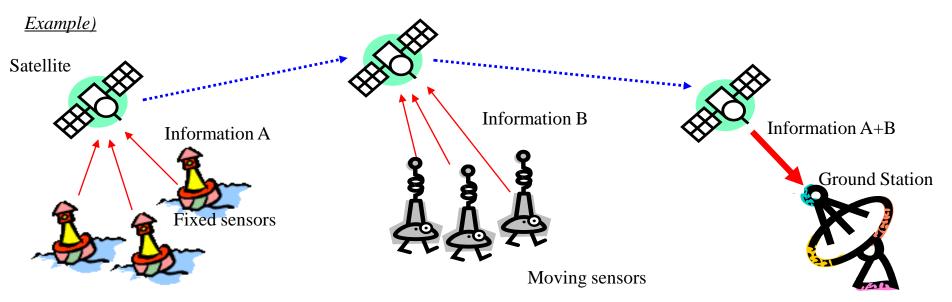
Special features:

-Attitude Stability 0.8 arcsec for 8.8 sec -Thermal Stability < 0.1K (at -50 degree) -Map Accuracy Compatible with "Hipparcos" Satellite ('89) -Telescope two CCDs with TDI

Collaborating with "Users" (scientists)

Quickly start with "not perfect" but "good enough" ("Hodoyoshi") space science or exploration mission!

Let us start UNISEC-GLOBAL Project !


CanSat world competition

 Store & Forward network for water quality & water level monitoring or other applications

 Open source software and "Virtual satellite" environment

"Store & Forward" gets ground information

- UHF receiver onboard Hodoyohi-3 & 4 can collect data from ground Sensor Network (fixed points or mobile)
- S&F mission outline
- 1. Fixed or mobile sensors on the earth get ground information and transmit them to Hodoyoshi-3&4 when they fly over the area
- 2. Hodoyoshi 3&4 receive and store the information, and forward (transmit) it to Ground Stations when it flies over them

Application areas: disaster prediction, water level monitoring, forest data acquisition.....

Weak Signal Receiver for Data Collection Capability

Item	Specification		
bit rate	100 bps, maximum 8 channels in		
	parallel		
Transmission duration	< 300 sec		
Transmission power from ground	20 mW		
Frequency band	920 MHz (no license of usage is required if using 20mW power)		

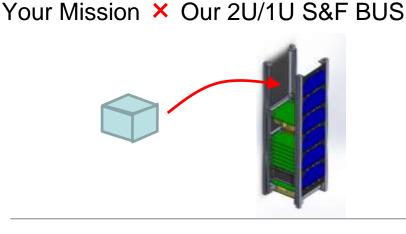
3U CubeSat "TriCom-1R" - Weak signal receiver from ground -

	Items	Values	Miscellaneous
	Size	10x10x30cm	3U size
S&F-ANT S&F-ANT CAM S&F OBC,Sub-CAM MTQ,RW LIBM PCU U-TRX TC-ANT	Weight	< 3kg	
	OBC	"Bocchan"board	Internal made
	Power (average)	4W	AZUR GaAs cell
	Battery	Li-Ion 41 wh	LIBM
	Downlink (H/K&data)	W 1.2kbps	460MHz AFSK "U-TRx"
	Uplink(H/K)	50W 9600bps	401MHz
	Attitude	Simple 3 axis	B-dot law only
	RF Receiver	20mW RF power from ground	920MHz no license required
	Actuators	magnet torquer despun wheel	"MTQ" "RW"
	Camera	GSD 314 m VGA @180km	"CAM"
S&F: M2M technology for IoT	Sub-Camera	GSD 67 m @600km	Five "Sub-CAM"

"Modified SS520"

Dedicated rocket for CubeSat by JAXA

Previous launch failed on Jan/2017 but will try it again !

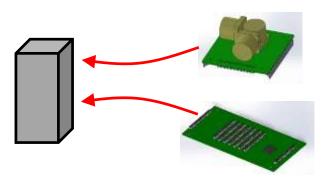

Proposal of S&F Network

- One satellite only provides 4 x 10 min chance of data collection
- If the satellite fails, no backup is provided

- How about making 2U or 3U by many UNISEC countries so that we can have more time to collect data from ground ?
 - Rule: the country who provides one satellite can use all the satellites for data collection.
 - Standardization of data protocol and communication system should be discussed

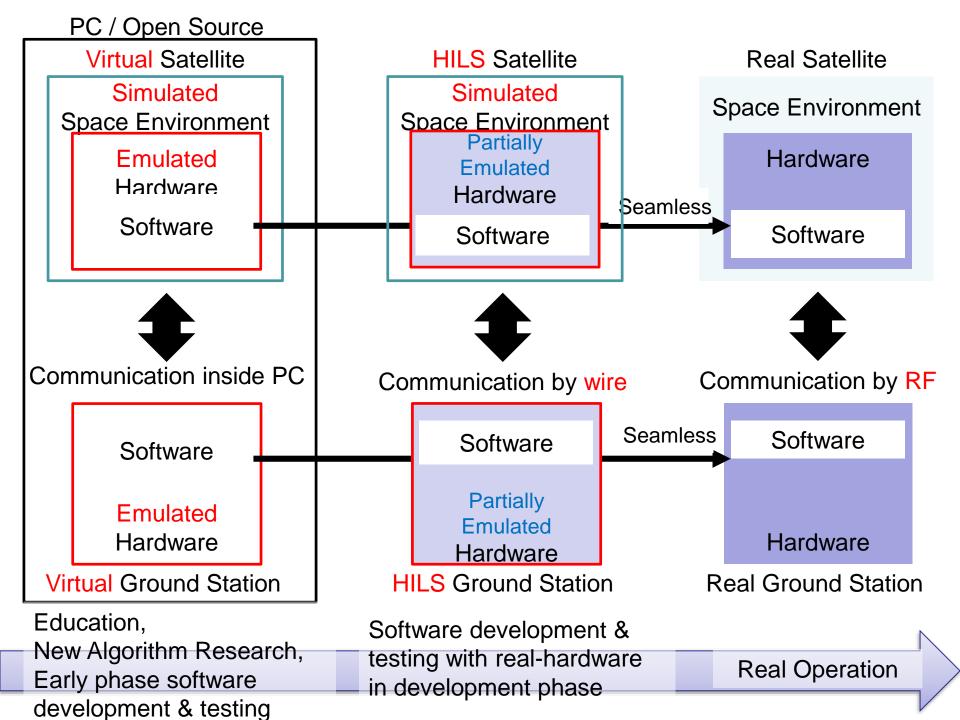
Options and Our Supports

- Any Collaboration : Your Idea X Our Experience
- All options can include capability building programs


Your Bus × Our S&F Mission Board

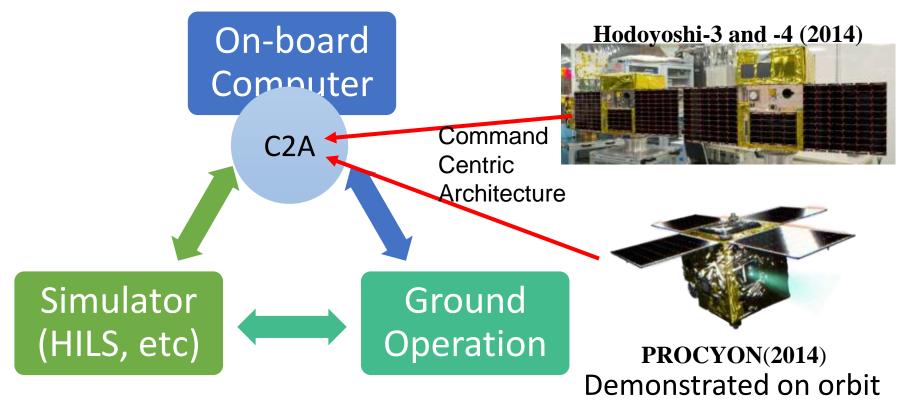
Your Members × Our 3U/2U S&F Cubesat (build Together!)

Your Bus × Our Heritage Components


Launch (deployment) from ISS with Kibo Unique Exposed Facility

JEM Small Satellite Orbital Deployer (J-SSOD)

Exposed Experiment Handrail Attachment Mechanism


Open Source Software and "Virtual Satellite" Environment

- Software/hardware interface is made open
- Universities voluntarily contribute by providing software which will be shared by community after verification
- "Virtual environment" of satellite, ground station and simulation system (HILS) shared by community
- Verified software can be implemented on satellites
- Existing satellites can be re-used by new software developed by other universities (software test, control algorithm test, new missions, etc.)

Let us start something ! - A framework for "virtual satellites"-

Integrated Satellite Software Framework

This framework will be published as open source activity. Let us create a community to make a great virtual world!

Guiding Principles for UNISEC-Global

- 1. Be honest regarding project feasibility openly recognize technology and schedule risks that may impact success.
- 2. Evaluate the achievements made in the past, and identify your position in the relation with them.
- 3. Build a system which can work as designed in the environment where fixing is impossible.
- 4. Whilst doing your best to avoid failing, ensure that you learn from failure.
- 5. Setup appropriate and realistic targets commensurate with your capability and capacity.
- 6. Use imaginative and innovative ways of achieving the maximum using only limited personnel, technical and financial capabilities

- Identify and work with your rivals and compete with each other to stimulate innovation & mutual growth. Recognize other people's successes and use these to stimulate yourself further.
- 8. Recognize the pressure in others working to demanding deadlines on challenging projects; support and help reduce their stress wherever possible.
- 9. Respect a spirit of mutual assistance. Seek ways to contribute to others, not only seeking help for yourself.
- 10. Evaluate your results realistically and reflect them to your subsequent activities.
- 11. Be careful not to be misled by the "bewitching nature and allure of space" or by flattering words. Be modest and sincere.
- 12. Remember that there are rules that you must follow from internal rules in your project to Outer Space Treaty.

Summary

- CanSat and Micro/nano/pico-satellites are excellent materials for space education as well as systems engineering/project management
- Start from simple space systems !
- Low cost and quick development micro/nano/ pico-satellites are opening new ways of space development and utilization.
- Please establish a community and make the most of community power!
- Let us start some "UNISEC-GLOBAL" projects !