E/M Launchers for Cansats Discussion Group 6 Naoyuki Higo, Nevsan Sengil, Shingo Fuchikami, Taiki Masutani, Vidmantas Tomkus ### Student Project - * Case 1: - * Altitude=100 m - * L=5 m - * $V_i = 44 \text{ m/s}$ - * a=20 G - * Case 2: - * Altitude=200 m - * L=5 m - * Vi=63 m/s - * a=40 G - * Case 3: - * Altitude=100 m - * L=10 m - * Vi=44 m/s - * a=10 G - * Case 4: - * Altitude=200 m - * L=10 m - * Vi=63 m/s - * a=20 G # Real Project Replacement of the Rocket's First Stage - * H=200 km - * m=1 kg - * $V_F = 7.77 \text{ km/s}$ - * $V_1 = 9.7 \text{ km/s}$ - Lenght of Launcher 4-5 km - * $E_k=1.5$ GJ (50% efficiency) - * Acceleration time=48 s a=20 G - * Travel time=97 s - * P=15 MW ## Discussion Group 6 *Thank you very much #### **CURRENT SITUATION** - Currently, payloads are transported to the Earth orbit or deep into the space with rockets. - In rockets, chemical energy is consumed to increase the kinetic energy of the exhaust gases. - But this technology has some shortcomings. #### ROCKETS - * First of all, transportation with rockets is quite expensive. It is estimated that the current cost of payload launching into LEO orbit is around \$50000/kg. - Secondly, building rockets capable to reach space requires high technology and complicated industrial facilities. - Next, exhaust plumes from the rocket engines are generally harmful to the launch site environment and ozone layer. - Finally, the exhaust speeds of the gases are limited by the speed of the sound of the propellant medium #### **NEW IDEAS** - * To overcome these difficulties, new solutions are unveiled. - Space elevator, laser and electromagnetic based launchers are proposed as the next generation satellite launchers - * Currently it can be said that, studies are mostly intensified on the electromagnetic launchers (EMLs) to transport payloads into the space. http://w ww.univ ersetoda y.com/10 5441/wh at-is-aspaceelevator/ http://ne xtbigfut ure.com/ 2007/05/l asersandmagneti c-launchforcheap.ht ml #### EML - Using EML, current payload transportation cost can be decreased dramatically as low as \$600/kg. - Moreover, EML does not produce harmful exhaust gases. - Finally, experimental studies show that muzzle velocities between 2 and 3 km/s can be reached with current technology. - To take advantage of this new method, many programs are started to construct electromagnetic launchers as early as 1980s mostly with military purposes. BAE SYS MS #### SMALL SCALE CANSAT LAUNCHER - * We want to propose a discussion topic about how to design an EML to be capable of launching pico satellites (m<1 kg) into LEO.</p> - * Or maybe a small scale EML can be built just to send Cansats to an altitude of a couple of 100 meters for university students. http://en.wikipedia.or g/wiki/Nonrocket_spacelaunch# mediaviewer/ File:Launch_ring.jpg #### SIMPLE EXAMPLE - * One Dimensional Equation of Motion - * Electric Circuit Equation - * M=0.037 Kg - * I=10000 Ampere - * L=1 m - * A muzzle velocity of 26 m/s is obtained. #### **BARRIERS** - * Power supply - * Condensators - * Batteries - * Homopolar generators - * Fast switching circuits - * Friction between rail and armature - * Metal erosion