

University of Monastir Faculty of Sciences of Monastir Microelectronics & Instrumentation Lab

Development of 3D Synthetic Vision with network of pico-satellites

Nissen Lazreg

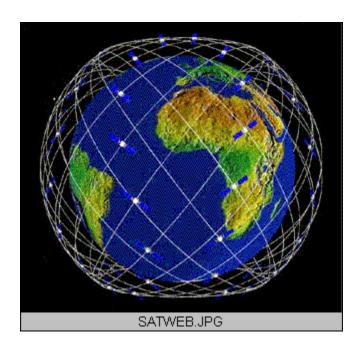
SATELLITE CONTEXT

- Now observing the Earth from space is performed by means of a series of satellites.
- A Pico-satellite constellation plays an important role in missions of vision and surveillance of ground.
- Spacecrafts may be threatened by the effects of external disturbances.
- * Each satellite networks requires solutions to avoid threats (disturbance).

Outline

- I. Objective
- **II. Satellites Network**
- **III. Choice of Architecture**
- IV. Application
- V. Conclusion and Outlook

OBJECTIVE

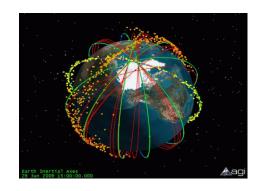

- Perform an architecture of constellation of Pico-Satellite that meets the coverage of Tunisia:
 - desert region exploitation and monitoring.
 - > fire detection, earthquake forecasts and predictions of volcanic activity...
 - ➤ Propose optimal solutions that take into account the constraints of the architecture and minimize the number of satellites covering

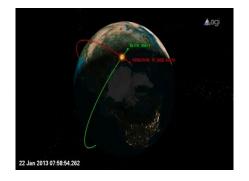
SATELLITE NETWORKS

☐ Advantages of formation flying

Several identical satellites in cooperative orbits

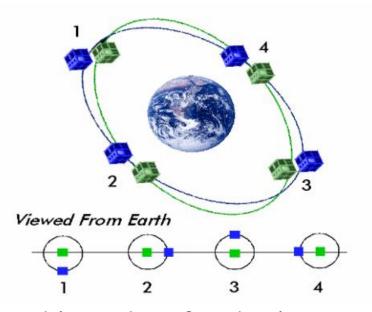
- Make possible new observing capabilities
- On-orbit reconfiguration within the formations offers multi-mission capability
- Reducing the size and complexity of the satellites in the formation.
- Take advantage of economies of scale
- Can reduce launch costs

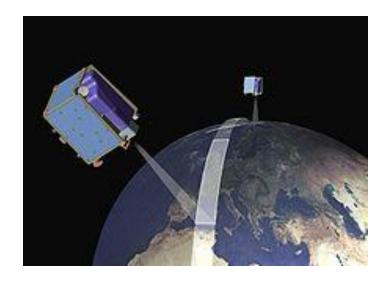

□ Background Issues


- > Two phases of mission of Nanosatellites:
 - * placement on operational orbit.
 - * counter orbital perturbations.

☐ Specific problems in training:

- Collision of satellites
- * relative motion modeling

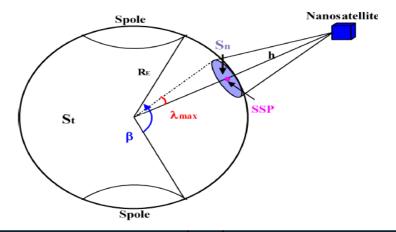

Over hundreds of thousands of pieces of this collision build a cloud in LEO



CHOICE OF ARCHITECTURE

- > Architecture avoid any collision.
- > Relative motion of each satellite
- > Determined and fixed distance between each satellite.
- \rightarrow Low dimension of training \longrightarrow Differential acceleration = 0
- > Relative Velocity between satellites = 0
- > Stable geometry.
 - ✓ Undisturbed environment with high accuracy

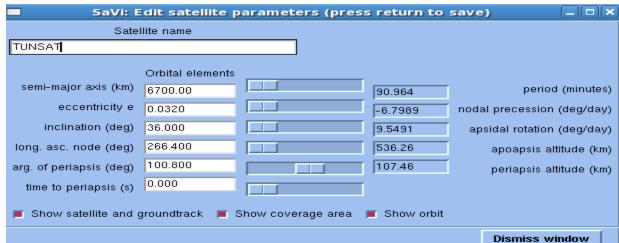
- > hierarchy of authority.
- geometry of the formation does not change along the reference orbit.
- > suitable for applications in meteorology and environmental.

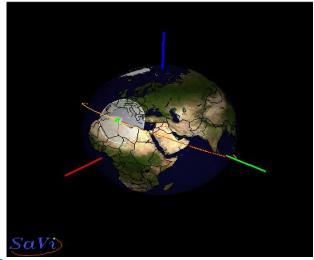

- A satellite training must have:
 - > As cloakroom, on the other satellite state.
 - ➤ A control law that depends on the other member.
- Their positions are determined by the distance measuring devices DMD and GPS.
 - > DMD determine their relative distances to each other
 - > GPS determines their position relative to the Earth and checks the distance measured between the satellites.

APPLICATION

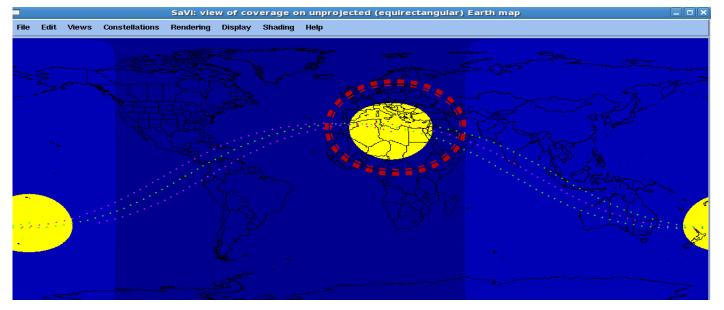
□ Constellation Modules

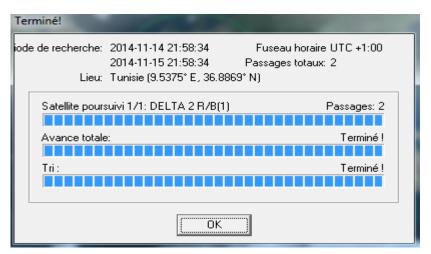
Design vector variable	Σ	Range
Constellation altitude	σ1	300 Km
Downlink data rate	σ2	140 Kbps
elevation angle	σ3	$5^{\circ} \leq \epsilon \geq 10^{\circ}$


Constant vector variable	[Value
Latitude	γ1	34°
Inclination angle	γ2	36°
β angle	у3	56°


Nano-Satellite for Tunisa Coverage Design Vector

Nano-Satellite for Tunisa Coverage Constant Vector


□ orbital parameters



Nano-Satellite for Tunisa Coverage

Number of Nano- satellites	2 Sats
Earth central angle (λ_{max})	14,94°
$\begin{array}{c} \textbf{Maximum time in} \\ \textbf{view } (\textbf{T}_{max}) \end{array}$	7,51 min
Orbital Period	9h
Number of orbit per day	2

Outputs of Nano-Satellite for Tunisa Coverage

12

CONCLUSION AND OUTLOOK

□ Conclusion

- > Review of some problems in LEO satellite networks.
- Find an architecture of satellites network that can interact with the most problems.

□ Outlook

- ➤ Discuss the best architecture of Leader-Follower for the best coverage of the earth (one or two Orbits).
- > Sizing coverage area

Thank You!