CanSat & Rocket Experiment('99~)

Hodoyoshi-1 '14

Possibilities and Future Vision of Micro/nano/pico-satellites - From Japanese Experiences

Shinichi Nakasuka University of Tokyo

Nano-JASMINE '15

Contents

- Features of Micro/nano/pico-satellites
- Japanese History and Lessons Learned
 - CanSat to CubeSat "First CubeSat on orbit"
 - From education to practical applications
 Important tips for development
- Visions on Various Applications of Micro/nano/pico-satellites
- University Space Engineering Consortium (UNISEC) and International Collaborations

Micro/nano/pico-satellite "Lean Satellite"

Micro-satellite: 20-100kg Nano-satellite: 2-20kg Pico-satellite: 0.5-2kg

Japanese Governmental Satellites ALOS-1: 4 ton ASNARO: 500 kg Kaguya: 3 ton Hayabusa: 510 kg

Motivation of Smaller Satellites Current Problem of Mid-large Satellites

Innovation by Micro/nano/pico satellites (<100kg)

OPUSAT(1U:1kg) XI-IV(1U:1kg) AeroCube(1.5U:2kg) Dove,Flock (3U:4kg)

Rendezvous/ Communication docking 高速通信・ISARA(3U) INSPIRE(3U) 低速通信・AISSAT-1(6kg)

AAReST

Weather MiRaTA(3U) MicroMAS(3U)

Bio-engineering BioSentinel計画案(6U) SPORESAT(3U:5.5kg)

Exploration

LWaDi(6U)

CAT(3U)

Re-entry 再突入回収(3U) Sunjammer

High Resolution. SCOUT(50kg) Skysat(120kg)

University/venture companies' innovative idea and development process <10M\$ < 2 years < 100kg, education, constellation of many satellites

FS-7(3U)

Atmosphere

(可視·近赤外)

NEMO-AM(15kg)

Features of Micro/nano/pico-satellites

- VERY low cost (from >100M\$ to <5M\$)
 - Leads to new missions, business, sciences...
 - Introduce new users (companies, countries..)
 - Can be an educational tools
 - Can be very challenging
- Short life cycle (from >5 years to <1-2 years)
 - One cycle possible during university years
 - More iterations (from "project" to "program")
 - Early return of investment (good for business)
- Simple and transparent satellite system
 - Easy to design, operate and trouble shoot
 - Each team member can see the total system

Educational Significances of Micro/Nano/Pico-Satellite and CanSat Projects

- Practical Training of Whole Cycle of Space Project
 - Mission conceptualization, satellite design, fabrication, ground test, modification, launch and operation
 - Know what is important and what is not.
- Importance for Engineering Education
 - Synthesis (not Analysis) of an really working system
 - Feedbacks from the real world to evaluate design, test, etc.
 - Learning from failures (while project cost is small)
- Education of Project Management
 - Four Managements: "Time, human resource, cost and risk"
 - Team work, conflict resolution, discussion, documentation
 - International cooperation, negotiation, mutual understanding
- The effects were found more than expected !!
- Also contribute to other technological areas !!

University Satellites in Japan 37 university satellites launched in 2003-2015

From CanSat to CubeSat, Nano-Satellite From Educational purpose to Practical application

Launchers for 37 university satellites

- Foreign Rocket: 12
 - ROCKOT (Russia)
 - COSMOS (Russia)
 - PSLV (India)
 - DNEPR (Russia)
- Japanese Rocket: 25
 - -M-V
 - -H-IIA17
 - (2012)– HTV⇒ISS deploy 6
- JAXA has been helping us for our activities!!

(2003)2

1

6

- (2005)
- (2008, 2012)3
 - (2014)
- (2006)2
- (2009~)

RAIKO, FITSAT-1 first deployment from ISS (2012.10)

What is the special features about space systems?

• A satellite cannot be contacted until the end of its mission once it is loaded on a rocket and launched

- "Non-maintainable system"

- Sometimes it should survive in space for more than 5 years without any human interactions, so
 Carefully consider how to survive in space !!
- Imagine all possible events and anomalies which may happen on satellites and prepare <u>countermeasures</u> for them as many as possible
- Focus on <u>power system</u> and <u>communication</u> <u>system</u>: to make it survive in any circumstances
- Don't skip required ground tests

Training step: CanSat 1999-now

งกรเ

CubeSat "XI-IV (Sai Four)"

<u>Mission</u>: Pico-bus technology demonstration in space, Camera experiment <u>Developer</u>: University of Tokyo <u>Launch</u>: ROCKOT (June 30, 2003) in Multiple Payload Piggyback Launch

Size	10x10x10[cm] CubeSat
Weight	1 [kg]
Attitude control	Passive stabilization with
	permanent magnet and damper
OBC	PIC16F877 x 3
Communication	VHF/UHF (max 1200bps)
	amateur frequency band
Power	Si solar cells for 1.1 W
Camera	640 x 480 CMOS
Expected life time	??

Captured Earth Images are Distribution to Mobile Phones

Launch of the World First CubeSat (XI-IV, Cute-1 and others) by "ROCKOT" 2003/06/30 18:15:26 (Russia, Plesetsk time) Project Manager of Hayabusa-2

Surviving 13+ years with 500+ pictures downlinked

XI-IV is still perfectly working after 13 years in orbit sepia color ! Recently Downlinked Photos Get older ?

2000 We started in situations that...

- No components on sales for CubeSat
 - Everything should be "hand-made" by ourselves
- No ground test facility in our university
- Please find out what you can do with your small money or not-so-good facility
- Please find out the persons who know how to do and who are willing to support you
 - We don't know how to find launchers
 - We don't know how we can get frequency
 - We don't know how we can get export license
 - But we could take much time to think & test

CubeSat "XI-V (Sai Five)"

Mission: CIGS solar cell demonstration, Advanced camera experiment <u>Developer</u>: University of Tokyo <u>Launch</u>: COSMOS (October 27, 2005) deployed from "SSETI-EXPRESS"

Size	10x10x10[cm] CubeSat	
Weight	1 [kg]	
Attitude control	Passive stabilization with	
	permanent magnet and damper	
OBC	PIC16F877 x 3	
Communication	VHF/UHF (max 1200bps)	
	amateur frequency band	
Power	Si, GaAs, CIGS cells	
Camera	640 x 480 CMOS	
Mission life	> 5 years	

Captured Earth Images

PRISM "Hitomi"

<u>Mission</u>: Earth Remote Sensing (20 m GSD, RGB) with Deployable Boom <u>Developer</u>: University of Tokyo

Launch: H-IIA (Jan 23, 2009) Piggyback with GOSAT (CO₂ monitoring sat)

Size	20x20x40[cm] in rocket	<u>Antennae</u>
	20x20x80[cm] in space	Lens
Weight	8.5 [kg]	
Attitude control	3-axis stabilization with	
	Sun, Magnet sensor, MEMS gyro	
	magnetic torquers	
OBC	SH2, H8 x 2, PIC x 2	
Communication	VHF/UHF (max 9600bps)	
Mission life		<u>Flexible telescope</u>
	> 2.5 years	

Mexico Seashore

US Desert

Solar cell panels

Wide Angle Camera

PRISMシステムブロックダイアグラム

Combination of "High performance but may-be-weak" processor and "Low performance but very robust and proven" processor

Photos of The Nile River

WAC(Wide Angle Camera)

NAC(Narrow Angle Camera)

Important Tips for Development

- Target level ("mission" or "bus" level)
 - Stepping up from Low/simple to High/complex
 - Transfer technology/experiences to next step
 - You can find highlight in even simple satellite
- "Kit" vs "Self-made"
 - Kit is very good to quickly get orbital results
 - But cannot understand the "inside of box"
 - "Self-made" will get deep understanding
 - Please find good combination of both strategy
- Don't think it an easy task
 - 100,000 man-hour were required for XI-IV

Vision on Applications to Space Science and Exploration

Space Science and Exploration Japanese Missions and Players -

Size(kg)	Cate gory	Players	Project Examples
>500	Mid- large	JAXA	Science: Ginga, Akari, Suzaku, Hitomi— Exploration: Hayabusa & 2, Kaguya, Akatsuki
100-500	Small	JAXA	Science: Hisaki (2013), ERG (2016) Engineering: Ikaros (2010)
20-100	Micro	JAXA University	Science: Reimei (Index, 72kg, 2005) Nano-JASMINE(38kg, 2017), RiseSat (2018) Exploration: PROCYON (58kg, 2014)
2-20	Nano	University	Science: CUTE-1.7+APD II (3kg 2008)
<2	Pico		Exploration: ECUULEUS (6U EM-1 2018)
	REIMEI	CUTE1.7	

UT's 4th Satellite:Nano-JASMINE

Mission: Astrometry (Getting precise 3D map of stars and their movements) <u>Developer</u>: University of Tokyo, National Astronomical Observatory of Japan, Shinshu University, Kyoto University

Launch: Initially CYCLONE-4 was planned but changed to another launcher

Size	50 [cm-cubic]
Weight	38 [kg]
Attitude control	3-axis stabilization with
	Star, Sun, Magnet sensor, FOG,
	RW, Magnetic torquers
OBC	FPGA
Communication	S-band 100 [kbps]
Mission life	2 [year]

Special features:

-Attitude Stability 0.8 arcsec for 8.8 sec -Thermal Stability < 0.1K (at -50 degree) -Map Accuracy Compatible with "Hipparcos" Satellite ('89) -Telescope two CCDs with TDI

NJ's "Astrometry" Mission

Mission

Estimate 3 Dimentional positions of stars and their movement

– Demonstration for "JASMINE" mission

Star position determination by Annual Parallax

- Attitude stabilization
 740 m-arcsec /8.8s
- Temperature

 50°C, ±0.1°C
 stability
- Long exposure time required.
- Two telescope angular separation should be kept constant.

Japanese group is promoting series of space astrometry missions, "JASMINE program", in international collaboration with Gaia DPAC team. JASMINE will play complementary roles of Gaia.

マ型ジャスミン

ノジャスミン

Late 2017 or early 2018

Nano-JASMINE

主鏡□径 5 cm 重量 35 kg 精度 3 ミリ秒角 (z_w < 7.5 等級) サーベイ 全天 運用 2017-2019 (素学中)

重量 1500 kg 精度 10万分の1秒角 (K_w < 11 等級) サーベイ 200 平方度 運用 2030 年代 (日間) (海外の多目的の大型ミッション等に参画し、 ミッション目標の 2020 年代での早期達成も目指す)

80 cm

Medium-JASMINE

2030s

主鏡口径

2021(?)-

Jinau	JAJA	···· L シャスミン
主鏡口径	30 cm	A NE SE
5 8	400 kg	

精度	10万分の1秒角(H _w < 11.5 等級)
サーベイ	数平方度
	Lana to Unite M (mark

運用 2020年代前半 (目)

50kg-class deep space probe "<u>PROCYON</u>"

(PROCYON: <u>PRoximate Object Close flY</u>by with <u>Optical Navigation</u>)

Developer: Univ. of Tokyo and JAXA (Japan Aerospace Exploration Agency)
 Launch: H2A rocket (together with Hayabusa-2 asteroid explorer, 2014 Dec.)
 Mission: Demo. of 50kg deep space exploration bus system (nominal mission)
 Asteroid flyby observation (advanced mission)

Earth photos captured from deep space by PROCYON

2015/11/08 @ 11,000,000 km away

2015/11/16 @ 8,000,000 km away

> 2015/11/18 @ 6,800,000 km away

2015/11/23 @ 5,200,000 km away

2015/11/29 @ 3,300,000 km away

Photos taken by PROCYON at close encounter of Earth in 2015/12 (one year after launch)

EQUILIBRIC One of 13 EM-1 CubeSats EQUILIBRIC LUNAR-Earth point 6U Spacecraft

Mission to Earth Moon Lagrange Point Intelligent Space Systems Laboratory, 2016/08/01

Spacecraft Overview

EQUULEUS has fundamental bus systems for deep space missions within 6U CubeSat (deep space communication, power, thermal control, attitude control, propulsion).

Logic of "order"

If you pursue the "perfect" objective from initial, you cannot get money and you cannot realize as it is very difficult to get the public approval and funding. *Quickly start with "not perfect" but "good enough" science mission!*

Vision on Applications to Earth Observation

Hodoyoshi-3 (left) and Hodoyoshi-4 before Shipment (April, 2014)

Implementation to Dnepr SHM 2014/6/10

Sri Lanka (LCAM 240m GSD)

Brazil (LCAM 240m GSD)

Greek (false color) (MCAM 40m GSD)

MicroDragon Project (50kg Earth Remote Sensing Satellite for Vietnam Engineers)

Total 36 engineers study and join the project in 5 Japanese universities. Launch by Epsilon rocket has been decided. (mid 2018).

The University of

TOKYO	1st Academic Year	2nd Academic Year	3rd Academic Year	4th Academic Year
	2013/10-2014/9	2014/10-2015/9	2015/10-2016/9	2016/10-2017/9

HODOYOSHI-1

<u>Mission</u>: Earth Remote Sensing (6.7m GSD, 4 bands: RGB & NIR) <u>Developer</u>: AXELSPACE, University of Tokyo, NESTRA <u>Launch</u>: DNEPR launch on November 6, 2014

Size	about 50 [cm-cubic]
Weight	60 [kg]
OBC	FPGA
Communication	UHF, X (10-20 Mbps)
Average power	50 W

Attitude control 3-axis stabilization with STT, SAS, Magnetometer, Gyros, RW, Magnetic torquers

- stability 0.1 deg/sec
- pointing accuracy 5 arcmin
- determination 10 arcsec

Optical sensor:

- Focal length 7
- Swath

- Bands(SNR)

15kg, 6.7m GSD (500km alt.) 740mm (F# 7)

- 27.8 x max 179km (500km alt.)
- R) B(57), G(74), R(80), NIR

Optical Camera (6.7m@500km) developed by Genesia Corporation

Y New Zealand ©AXELSPACE

Dubai (6.7mGSD)

à.

WNISAT-1R (to be launched in 2016 spring)

- Glacier Observation of arctic ocean
- GNSS-R reflection experiment
- Laser communication experiment

Vision on Applications to Novel Type of Missions

"Store & Forward" gets ground information

- UHF receiver onboard Hodoyohi-3 & 4 can collect data from ground Sensor Network (fixed points or mobile)
- S&F mission outline
- 1. Fixed or mobile sensors on the earth get ground information and transmit them to Hodoyoshi-3&4 when they fly over the area
- 2. Hodoyoshi 3&4 receive and store the information, and forward (transmit) it to Ground Stations when it flies over them

Application areas: disaster prediction, water level monitoring, forest data acquisition.....

3U CubeSat "TriCom-1" - Store & Forward Test Satellite -

Items	Values	Miscellaneous
Size	10x10x30cm	3U size
Weight	< 3kg	
OBC	"Bocchan"board	Internal made
Power (average)	4W	AZUR GaAs cell
Battery	Li-Ion 41 wh	LIBM
Downlink (H/K&data)	W 1.2kbps	460MHz AFSK "U-TRx"
Uplink(H/K)	50W 9600bps	401MHz
Attitude	Simple 3 axis	B-dot law only
Sensor	magnetic sensor, gyro GPS receiver	"GNSS"
Actuators	magnet torquer despun wheel	"MTQ" "RW"
Camera	GSD 314 m VGA @180km	"CAM"
Sub-Camera	GSD 67 m @600km	"Sub-CAM"

Weak Signal Receiver for Data Collection Capability

ltem	Specification	
bit rate	100 bps, maximum 8 channels in	
	parallel	
Transmission	< 300 sec	
duration		
Transmission	20 mW	
power from		
ground		
Frequency band	920 MHz (no license of usage is	
	required if using 20mW power)	

"Rental Space" in Hodoyoshi 3 & 4

Provided Services: -Electric power -Information line -Camera -Windows

- Vacant spaces of 10cm cubic size, which are sold to customers
- To provide the "orbiting laboratory" or "advertisement room" opportunity for companies, researcher, public
 - Space demonstration of new products
 - Space environment utilization (micro-gravity)
 - Space science, etc.

Inside of 10cm Cubic Space

This message can be uplinked

"Moving Earth" as seen through the window

20 second video clip is downlinked and sent to Sanrio

©1976, 2014 SANRIO CO., LTD.

UNISEC and International Collaborations

University Educational Community **UNISEC** (UNIversity Space Engineering Consortium)

- Founded in 2002, became NPO in 2003
- 70 laboratories from 50 universities (2015)
- 811 students, 267 individual/company members
- UNISEC Missions:
 - Education and human resource training for space development/utilization
 - Innovative space technology "seeds" development
- Activities to be Supported:
 - Joint experiment, joint development, joint education, etc.
 - Workshop, symposium, technology exchange, etc.
 - Consultation on legal matters (frequency, export law, etc.)
 - Finding "rivals" within the community !
 - "UNISEC Lecture Series"

http://www.unisec.jp

Space Engineering Consortium

Ground Station Network (GSN)

- If many universities' ground stations are connected by internet, then it provides
 - Extended operation windows of their own satellite.
 - Backups of failed ground stations and rapid satellite operation

Univ. of Tokyo

Present participating colleges, universities in Japan

- Worldwide network is under construction
 - Germany (Wurzburg), Sweden (Lurea Univ. in Kiruna),
 - USA (Calpoly, Hawaii, Stanford, Santa Clara, etc)

CLTP History & Participants 48 participants from 25 countries

CLTP1 (Wakayama Univ. in Feb-March, 2011)

12 participants from 10 countries, namely Algeria, Australia, Egypt, Guatemala, Mexico, Nigeria, Peru, Sri Lanka, Turkey (3), Vietnam.

CLTP2 (Nihon Univ. in Nov-Dec, 2011)

10 participants from 10 countries, namely Indonesia, Malaysia, Nigeria, Vietnam, Ghana, Peru, Singapore, Mongolia, Thailand, Turkey.

CLTP3 (Tokyo Metropolitan Univ. in July-August, 2012)

10 participants from 9 countries, namely Egypt (2), Nigeria, Namibia, Turkey, Lithuania, Mongolia, Israel, Philippines, Brazil.

CLTP4 (Keio Univ. in July-August, 2013)

9 participants from 6 countries, namely Mexico(4), Angola, Mongolia, Philippines, Bangladesh, Japan.

CLTP5 (Hokkaido Univ. in Sept 8-19, 2014)

7 participants from 5 countries, namely Korea (2), Peru, Mongolia, Mexico (2), Egypt. CLTP6 (Hokka

CLTP6 (Hokkaido Univ. in Aug, 2015)

Mission Idea Contest (MIC) for Micro/nano satellite utilization

- Mission and satellite design idea for less than 50kg micro/nano/pico-satellites
- Regional coordinators: 33
- History
 - MIC1 in Tokyo, March 14, 2011
 - MIC2 in Nagoya, Oct. 10, 2012
 - PreMIC3 in Tokyo, Nov. 23, 2013
 - MIC3 in Kitakyushu, Nov 19, 2014
 - PreMIC4 in Tokyo, July 3, 2015
 - MIC4 to be held in Varna, Oct, 2016

Novel Ideas for Nanosatellite Constellation Missions

R. Sandau, S. Nakasuka, R. Kawashima, J. Sellers (eds.

Global network through MIC and CLTP (MIC:33, CLTP: 21 nations) 38 countries in total 260 attendants from 47 nations in 5th Nano-sat Sympo 2013. 7th Nano-sat Sympo will be held in October 2016 in Varna.

- MicroDragon is developed with 36 Vietnam young engineers in four years

- Collaboration with Kazakfstan, Brazil, Ukraine, etc. is under discussion

"UNISEC-Global" activities

33 regions/countries are interested to start UNISEC in their countries: South Africa, Angola, Namibia, Egypt, Ghana, Kenya, Nigeria, Tunisia, Bangladesh, Korea, Mongolia, the Philippines, Singapore, Taiwan, Thailand, Turkey, Australia, Indonesia, Saudi Arabia, Canada, USA, Guatemala, Mexico, Peru, Brazil, Bulgaria, Italy, Samara (Russia), Switzerland, Germany, Slovenia, Lithuania and Japan.

12 Local Chapters and 1 Association of Local Chapters have been acknowledged. (red part)

UNISEC-GLOBAL meeting will be held in Varna in October 2016

Summary

- The era of micro/nano/pico-satellites has come !!
- Not only "launch", but also make it really work and perform missions in space !!

– To make it survive in space !

 Stepping up from simple to sophisticated satellites would be a good strategy !!

• Enjoy this one week joint event and find new friends and collaborators !!