

Session 1: Project Reports Ground Operation Analysis of an Advanced Satellite in Near Equatorial Orbit

presented by

<u>Abhishek Rai</u>, Goh Shu Ting and Kay-Soon Low Satellite Research Centre (SaRC) School of Electrical and Electronic Engineering Nanyang Technological University, Singapore

Tuesday, October 18, 2016

SaRC - Satellite Research Centre

To be a world class centre for advanced research and training in innovative space technologies for small satellite system

VELOX-CI A climate research satellite using radio occultation. In orbit since 16 Dec 2015.

VELOX-I

Demonstrated world's first ZigBee network

in space.

Celebrated its 5th year anniversary this year

X-SAT

VELOX-PIII

The smallest satellite of iPhone 5 size, 193g. In orbit since 30 June 2014.

VELOX-II

AOBA VELOX-III

Inter-satellite communication demonstrating anywhere anytime up and down link. In orbit since 16 Dec 2015. Pulse plasma thruster demonstration satellite. Scheduled for launch in 2016.

H

VELOX-PII

The first student built satellite. In orbit since 21 Nov 2013.

In orbit since 20 April 2011. Captured more than 9000 high resolution images.

Agenda

- VHF/ UHF Ground Station in NTU
 - Limitations of the Ground Station
- VELOX-I Overview
 - Lessons Learned
- · VELOX-II Overview
 - Ground Operation Requirement
 - Autonomous Ground Station
 - Ground Station Maintenance
 - Experiments Conducted
- Summary
- Future Plans

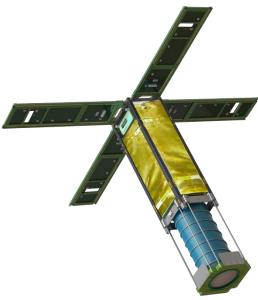
VHF/ UHF Ground Station

- Setup by undergraduates in the Undergraduate Satellite Program (USP) in 2010
- Licensed and approved by Info Communications Development Authority of Singapore (IDA) to track and communicate with Pico- and Nano satellites
- Assigned "9V1SG" call sign; Radio Amateur Operators
- Grid Location: "0J11UI" (Jurong West)
- Conducted operations for VELOX-PII and VELOX-I
- Currently tracking and performing real time operations for VELOX-II

Ground Station: Located in NTU

VHF/ UHF Ground Station-Limitations

- Geographical location of Singapore: Near the equator, frequently experiencing tropical climate (Rain, Lightning)
- Located within a busy sea port and an urban environment; Interference
- Approximately 10–12 minutes contact per pass; Further reduces space to ground communication



VHF/ UHF Ground Station-Limitations

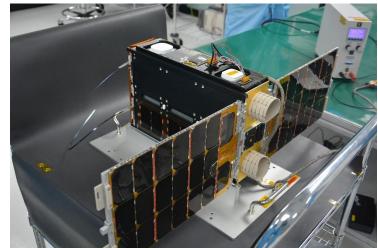
VELOX-I Overview

	100mm x 100mm x 340mm (VELOX-I),			
Dimensions	60mm x 70mm x 30mm (VELOX-PIII)			
Mass	4088 grams (VELOX-I), 193 grams (VELOX-			
	PIII), total 4281 grams			
Expected lifetime	12 months (VELOX-I), 6 months (VELOX-			
	PIII)			
Orbit Sun-synchronous low earth orbit (
OIDIL	650 – 700 km altitude			
Attitude determination and control system	(VELOX-I) 3-axis stabilized and controlled			
	with 1 GPS receiver, 2 IMUs, 1 dual-FOV sun			
	sensor, 8 coarse sun sensors, 3 magnetic			
	torquers and 3 RWs			
On-board data Mainboard with 100MHz 8051 MCU, 2G				
handling	card, UART and I ² C data interfaces			
Communications	9600bps BPSK downlink / 1200bps AFSK			
	uplink, UHF & VHF dipoles			
Power subsystem	(VELOX-I) 4 deployable GaAs panels for			
	28.8W peak, 5200mAh Li-ion battery			
Structure	Al. 7075 chassis, with stainless steel/Ti-6Al-			
	4V load bearing parts; spring-loaded			
	separator, solar panel deployer, and optics			
	extension mechanism			
	Multi-Layer Insulation (MLI) and battery			
Thermal control	heaters			
	Vision system with extended optics for 20m			
Payloade	CSD CDS payload for procision payigation			

VELOX-I: Revisits Singapore 4 times a day

VELOX-I: Lessons Learned

- 4 passes (2 mornings, 2 evenings)
 - > Evening passes are from the West, generally better
 - Require additional manpower to operate the ground station in the evenings
- Passes with < 10° elevation experience signal degradation
- Low data rate; more passes required to download data
- During rain or thick cloud formation, no ground pass can be established
- Conduct visual inspection of mechanical assemblies periodically (rotators, antennas, cable works)
- Need for an autonomous ground station (VELOX-II)




Ground Station: Cabling reworks.

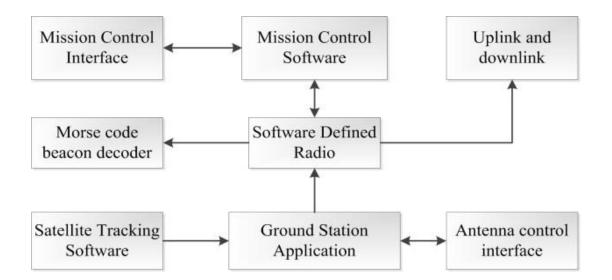
VELOX-II OVERVIEW

- 6U CubeSat
- Carrying primary payload designed by local company Addvalue Innovation
- Experimental communication payload is to exhibit Inter Data Relay System (IDRS) with higher orbiting satellite
- Conduct inter-satellite communication and relay relevant data to ground station, which can then be accessed via telnet
- Ability to demonstrate "data downlink anywhere, anytime in orbit" without the need of acquiring Line of Sight (LOS) when flying over Singapore

VELOX-II OVERVIEW

VELOX-I: Revisits Singapore 4 times a day

Overview of VELOX-II			
Dimensions	120 mm x 246 mm x 340.5 mm in stowed		
Mass	9 kg (satellite)		
Orbit	Near equatorial LEO orbit, 550 km altitude		
ADCS	2 IMUs, 4 fine and 8 coarse sun sensors, 3 torquers, 3 reaction wheels		
Communication	9600bps AFSK 437.305 MHz, 1200bps BPSK AX-25 beacon		
OBDH	100 MHz 8051 MCU, 2 GB SD card, UART and I2C interfaces		
PSS	2 deployable GaAs 6U panels (2s5p, 40 W peak), 2 GaAs 3U panels (2s3p, 12 W peak), Li-ion batteries @ 7.2 V nominal)		
Thermal control	Multi-Layer Insulation (MLI)		
Structure	AL 7075 chassis, with stainless steel/Ti-6A1-4V bearing parts; spring-loaded separator, solar panel		
Payloads	Primary communication payload (IDRS), GPS fault tolerant electronic circuit		

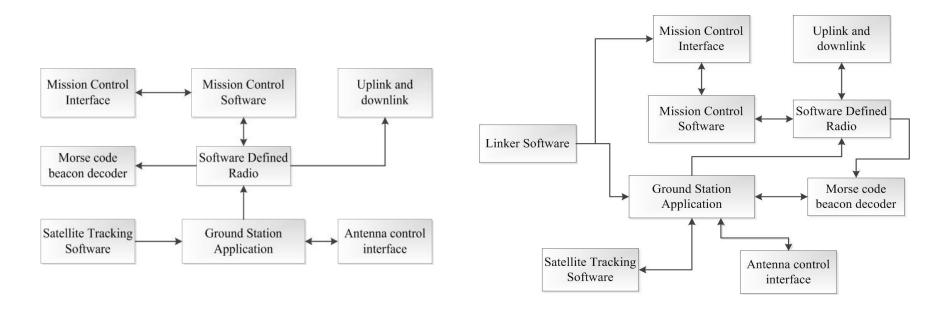

VELOX-II: Revisits Singapore up to 14 times a day.

VELOX-II Ground Operation

For VELOX-I:

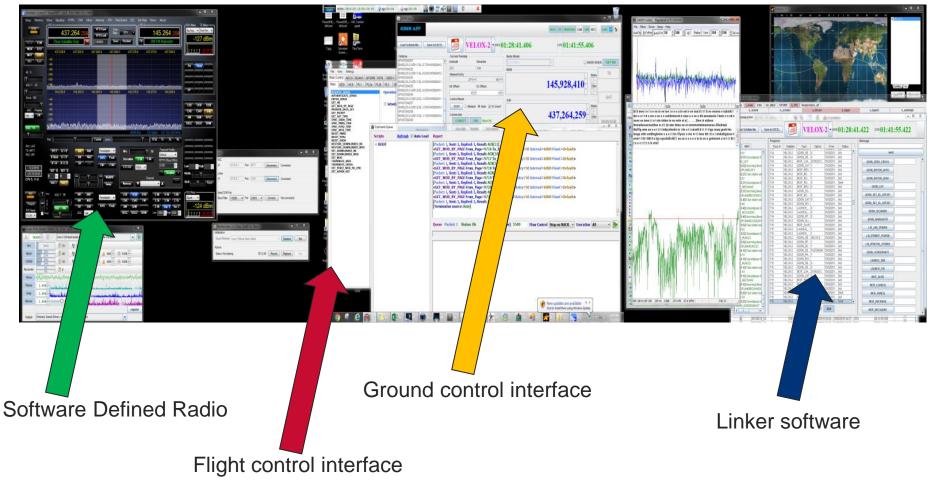
Operators manned most passes manually

Requirement for VELOX-II:


- 24/7 ground operation (Higher revisits)
- Minimize ground operation manpower

Solution:

Autonomous Ground Station


Autonomous Ground Operation

- New linker software to link both flight control and ground antenna control software
- Enable flight control and ground antenna control interface to be commanded by linker
- Critical applications always OFF except during ground pass period
- Non-critical applications always ON

Autonomous Ground Operation

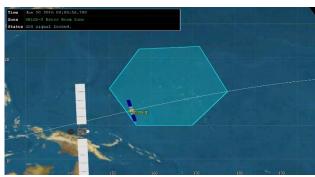
Autonomous Ground Station

Intensive operations

- 14 to 15 passes per day
- Approximately 3640 passes
 (260 days * 14 pass/day) as
 of 31 Aug 2016
- Fully-automated operations
- Power cycle equipment weekly
- Maintenance
 - Rotator replacement
 - 30 Apr to 11 May 2016
 - Routine maintenance
 - · 29/30 Sep 2016

VELOX-II Experiments Conducted

Experiment	Date	Status
Inter-satellite communication #1	22 Dec 2015	Fail
Inter-satellite communication #2	27 Dec 2015	Fail
Inter-satellite communication #3	20 Jan 2016	Success
Inter-satellite communication #4	26 Feb 2016	Success
Inter-satellite communication #5	01 Mar 2016	Success
GPS #1 orbit propagator verification	01 Jan 2016	Success
GPS #2 - radio occultation	07 Jan 2016	Success
GPS #3 - radio occultation	08 Mar 2016	Success
Fault tolerant payload	Daily	Automated


Up to current date: All payload experiments still ongoing

Summary

VELOX-I

- Sun-Synchronous Low Earth Orbit (LEO); 4 revisits per day
- Duration of ground communication per ground pass is approximately 10 minutes
- Lessons and experience learned
- VELOX-II
 - Near Equatorial Orbit (NEO); 14 revisits per day
 - Requires 24/7 operation; Intensive
 - Higher manpower cost
 - Need for an autonomous ground station
 - Primary payload (IDRS) aids in relaying data through the on demand 2-way intersatellite communication; More experiments being conducted
 - All experiments have been successfully conducted
- Autonomous Ground Station
 - Setup to cater to VELOX-II requirements
 - In-house developed software updates and frequent routine maintenance imposed to prevent any setbacks

Future Plans

- VHF/ UHF Ground Station
 - Expose and educate students to real time ground operations; First hand experience on satellite communication
 - Upgrading; To be able to track constellation of satellites
 - Mobile Ground Station

•

- For temporary usage during maintenance works
- Currently in progress (By staff and undergraduates)

Thank you!

