

7th Nano-Satellite Symposium

Determination of a Mean Ballistic Coefficient and Decay Predictions for CubeSats

Mehmet Can ÜNLÜ Kağan ATAALP Ayça KULA

TAI – Turkish Aerospace Industries Inc.

18 October 2016

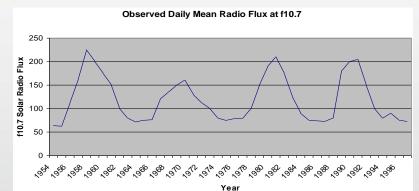
INTRODUCTION

- Satellites in Low Earth Orbit (LEO) decay due to environmental effects especially atmospheric drag. And it is important to estimate decay of a satellite correctly for the operations and lifetime.
- In this study, a simple equation which calculates decay of a satellite in every orbit is used as reference.

$$\Delta a_{rev} = -2\pi \left(\frac{C_d A}{m}\right) \rho a^2$$

From above equation, $\left(\frac{m}{c_d A}\right)$ can be expressed as ballistic coefficient. Table below shows change in ballistic coefficient from satellite to satellite.

Satellite	Mean Ballistic Coefficient
Oscar – 1	29
Echo – 1	0.515
ERS – 1	73
Skylab	228

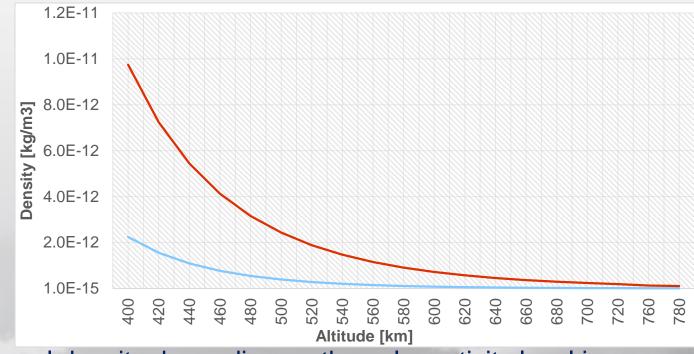

INTRODUCTION

- In order to obtain more realistic results, varying atmospheric density due to altitude and solar activity are considered.
- Solar activity level estimation code is generated to determine atmospheric density more accurate.
- Finally, to determine mean ballistic coefficient, real flight data of 1U CubeSats are investigated.
- Because CubeSats have similar dimension and mass properties, a mean generic ballistic coefficient prediction is more applicable.

Atmospheric Density Model

To determine solar activity, first, solar flux data and solar cycles between 1954 and 1996 are investigated.

These cycles were normalized to 100 to find the activity level percentage in a cycle. A polynomial is fitted to the data and it gives the percentage of solar activity for a given date in its own cycle.

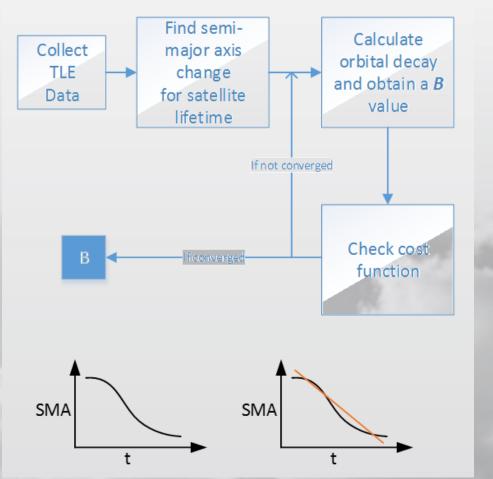

100 Cycle 1 Cycle 2 80 Cycle 3 Normalized F-10.7 (%) Cycle 4 60 Mean Fitted Polynom 20 -20 2 10 0 6 12

Time (Year)

UNCLASSIFIED

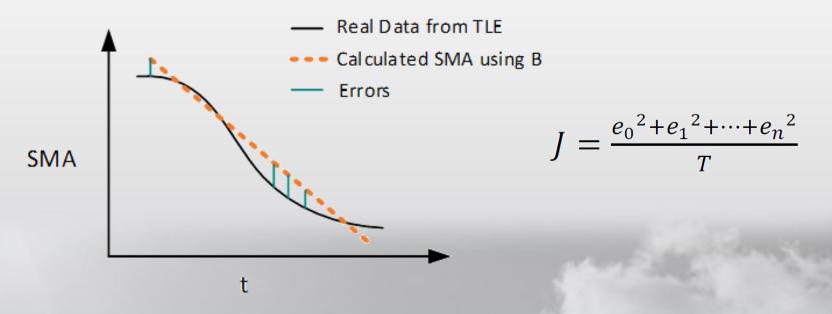
Atmospheric Density Model

Harris-Priester model was taken as reference, because it is valid for LEO altitude range and gives both minimum and maximum density values for a specific altitude.



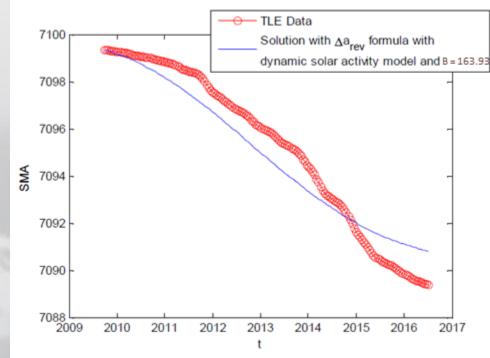
The real density depending on the solar activity level is:

$$\rho_{sa} = \rho_{min} + \frac{\rho_{max} - \rho_{min}}{100} \times (\% Activity)$$


Determination of B

Backward TLE data was downloaded for 1U CubeSats and was solved as an optimization problem for each CubeSat. The method is illustrated below.

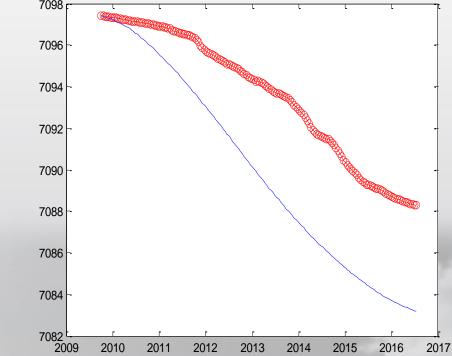
Determination of B


Optimization cost function is created as below for the solution of B. Where e_n is the error between real and calculated SMA data and T is time.

Dividing the cost function by T makes cost function and fitting performances comparable between satellites that have different data and time span.

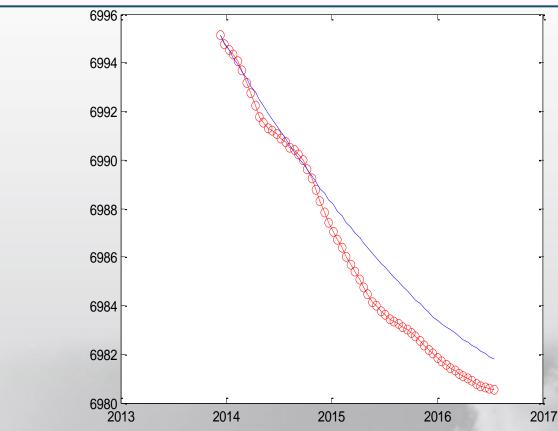
Example Analysis

- An example analysis is performed for ITUPSAT-1 with modified B which is obtained via the method proposed in the paper.
- ► In ITUPSAT-1 case, best B value for satellite is obtained as 163.93. Δa_{rev} is solved with a step size of 15 days by recalculating the new atmospheric density with respect to solar activity.


Investigation of Results

> The analysis is done for all 1U CubeSats covered in this study.

Satellite	Analysis Duration (year)	Ballistic Cofficient	Initial Altitude (km)	Normalized Cost	
UWE3	2.61	92.59259	648.90	0.76	
ZACUBE-1	2.65	96.15385	641.09	0.83	
HINCUBE	2.61	83.33333	640.63	0.94	
FUNcube-1	2.57	81.30081	640.60	0.95	
ESTcube-1	3.19	119.0476	667.21	1.33	
iCUBE-1	2.59	86.2069	617.12	1.43	
PUCPSat-1	2.61	81.96721	616.95	1.49	
UWE-2	6.80	181.8182	719.39	1.54	
Libertad1	9.27	140.8451	722.33	1.66	
ITUpSAT1	6.80	163.9344	721.35	1.73	
HumSat-D	2.62	66.22517	616.96	1.90	
Duchifat-1	2.09	69.44444	615.27	1.95	
SwissCube-1	7.30	147.0588	721.34	1.99	
CSTB1	9.28	117.6471	712.00	2.41	
BEESAT-2	3.22	78.125	569.86	8.17	
BEESAT-3	3.21	75.18797	637.09	8.61	
SOMP	3.26	67.11409	569.96	9.90	
MEAN:102					


Investigation of Results (Worst-Case)

- The calculated mean value of ballistic coefficients is 102.
- All analyses for satellites are performed again with the mean value and the best and worst cases were investigated.

The worst case occured for UWE-2 satellite and the semi-major axis difference at the end of 7 years analysis is smaller than 6 kilometers.

Investigation of Results (Best-Case)

The best case occured for iCUBE-1 satellite and the semi-major axis difference at the end of 2.5 years analysis is smaller than 1 kilometers.

CONCLUSION

- A quick assumption can be made for CubeSat ballistic coefficient *B* taking $C_d = 2.5, A = 0.1x0.1 = 0.01 m^2, m = 1.33 kg.$
- > This leads to a value $B_{standart} = 53.2$ which is different than the found mean value in this paper.
- This paper investigated the ballistic coefficient using real satellite data for 1U CubeSats.
- Finally, it can be proposed that usage of modified mean ballistic coefficient $B_{mean} = 102$ with the proposed modified solar activity approximation.

DETAIL -200

SECTION K-K1F6 SCALE: 2/1 (2 PLCS)

TURKISH AEROSPACE INDUSTRIES, INC.

www.tai.com.tr