

"Store & Forward" gets ground information

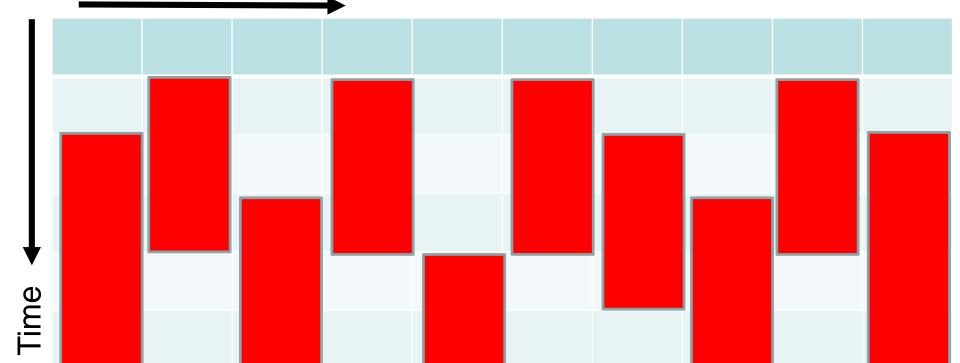
 UHF receiver onboard Hodoyohi-3 & 4 can collect data from ground Sensor Network (fixed points or mobile)

S&F mission outline

- 1. Fixed or mobile sensors on the earth get ground information and transmit them to Hodoyoshi-3&4 when they fly over the area
- 2. Hodoyoshi 3&4 receive and store the information, and forward (transmit) it to Ground Stations when it flies over them

Application areas: disaster prediction, water level/quality monitoring, forest/agriculture data acquisition, sea information collection, environmental data acquisition, etc.

International S&F Network


- How about making 1U or 2U satellites by many countries so that we have more opportunities to send the data to satellites?
- The country who provides one satellite can use all the satellites for data collection
- Water quality monitoring is the first candidate, but other applications should also be pursued

Technological Issues (1)

Specifications of transmitter from ground

- RF power and input power, data rate, size of antenna, transmission intervals, etc.
 - Considering "water quality management" mission
 - ➤ Water Quality Sensor is not chosen yet (TBD)

Frequency > These factors will be decided after sensor/data are decided

Technological Issues (2)

Overall systems architecture

- i. How to deal with transmission "collisions"?
 - > CDMA, FDMA, TDMA? ---- FDMA is suitable
- ii. How the transmitter knows satellites' coming?
 - i. Beacon from satellite trigger transmission
 - Ground receiver maybe turned on and off to reduce power consumption
 - ii. Time based (clock error should be considered)
 - iii. Transmitter turned on and off periodically
 - i. Find suitable ON-OFF timing sequence
 - iv. Hybrid (receiver ON just before satellite in vision)
 - Future: Wireless power from satellite to the sensor, and trigger the sensor to transmit the signal back
- iii. License of frequency usage: should be checked

Technological Issues (3)

Downlink from satellites

- i. Ground station concept, number, frequency (UHF or S Band) and Cost & Performance should be traded off
- ii. Collaborate with "Infosteller"
- iii. Experimental frequency would be adequate
- iv. Data storage and sharing way should be designed
- v. Downlink radio transmitter should be standardize, housekeeping data also into standardized packets
- vi. Encryption of data (example. Spain data to Ghana)
- vii. Decided based on cost factor, either S Band or UHF
- viii. Some countries can participate only with providing Ground Stations.
- ix. Mass production and order of GS may reduce cost

Technological Issues (4)

Design of ground sensor/transmitter system

- (Assuming 6 months without maintenance)
 - i. Power: Solar cell ? Screw ? Wind mil ?
 - i. If used in river, use screw but requires maintenance
 - ii. Solar cell is suitable due to less maintenance
 - iii. Location based solution
 - ii. Antenna:
 - i. Should be decided considering
 - i. Coverage requirement
 - ii. Communication speed
 - iii. Communication frequency
 - iv. User distribution
 - v. Candidates: Omni, patch, horn, helical antenna
 - iii. Standard interface for various sensors
 - Serial communication would be adequate

Technological Issues (5)

Water quality monitoring device

- Should be small, cheap and low power
- ii. Endurable for long time
- iii. Accuracy requirement (specification)
- iv. Application dependent (level, chemical, pH, heavy metal, oil detection, temperature, application selection based on user needs)
- v. Possible information sources: Tunisian University (Monastir), ANU, mailing list from Rei (UNISEC)

Other possible applications

Each member should study other possibilities

Managemental Issues (1)

Who (what organization) will lead this international collaboration?

- Conceptual study (feasibility study, plan generation, etc) should be lead by Mr. Rakesh Chandra Prajapati
- UNISEC providing info to students to participate in the project
- Team with geological scientist to find the user requirement (saves time to find the mission or application)
- Strong will and sustainable long-time effort are required as many issues should be solved

Managemental Issues (2)

Funding for the system development and operation

- Benefit to human being may appeal to ADB, WB or other banks or JICA (Japan)
- Connect with Hydro power (fund)

Launch opportunity

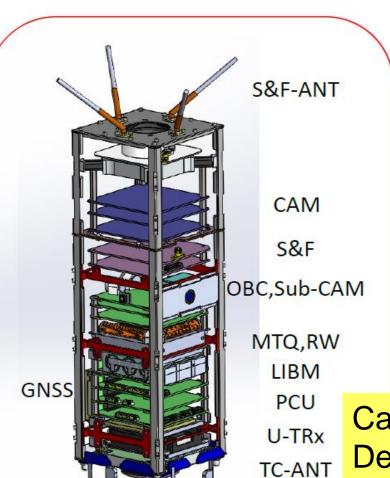
- May appeal to some governments to get opportunity such as Japanese H-IIA/ISS launch
- Contact for KiboCube
- Epsilon should be also contacted (to IHI person)

Timeline and Action Items

First milestone is a meeting in ISTS (June, 2017). Until then, we should;

- Work for 6 months
- Collect info, collect regions, people
- Find someone with Water quality knowhow
- Keep email contacts informed

Meeting on June 3 to 9, 2017 in ISTS (with Skype with those who cannot come)


 At the meeting, we will define next phase work, discuss project feasibility

Weak Signal Receiver for Data Collection Capability

Item		Specification		
bit rate		100 bps, maximum 8 channels in		
		parallel		
Transmission		< 300 sec		
duration				
Transmission		20 mW		
power from	power from Will be		used as common	
ground		receiver which will be distributed with cheap price		
	distribu			
Frequency band		920 MHz (no license of usage is		
		required if using 20mW power)		

3U CubeSat "TriCom-1"

- Store & Forward Test Satellite (Dec '16) -

Items	Values	Miscellaneous
Size Weight	10x10x30cm < 3kg	3U size
OBC	"Bocchan"board	Internal made
Power (average)	4W	AZUR GaAs cell
Battery	Li-lon 41 wh	LIBM
Downlink (H/K&data)	W 1.2kbps	460MHz AFSK "U-TRx"
Uplink(H/K)	50W 9600bps	401MHz
Attitude	Simple 3 axis	B-dot law only
Sensor	magnetic sensor, gyro GPS receiver	"GNSS"
he 211 size	uer	"MTQ"

Can be 2U size.

Design information
will be provided as a
reference if needed.

ruer "MTQ" "RW"

n VGA "CAM"

"Sub-CAM"