Agenda item 10 Technical Presentation at the 61st Session of the Committee on the Peaceful Uses of Outer Space

GLOBAL ANTENNA SHARING PROJECT for achieving Sustainable Development Goals

Prof.Dr. Alim Rustem Aslan UNISEC-GLOBAL Steering Com.Member

Manager, Space Systems Design and Test Laboratory
Istanbul Technical University, Faculty of Aeronautics and Astronautics,
Istanbul, Turkey
aslanr@itu.edu.tr

A UNISEC-GLOBAL PROJECT

The Global Antenna Sharing Project initiated by

 Kyushu Institute of Technology, UNISEC-Japan

in collaboration with

 Istanbul Technical University, UNISEC-Turkey

with support of InfoStellar, Japan

Main Goal of Project

- Efficient use of Micro/Nano Satellite systems (constellations) (300 placed in orbit in 2017)
 - Sharing resources
 - Helping less developed institutions to reach higher levels
 - Increased usage time of expensive systems (ground stations)
 - Reduced downtime
 - Better use of systems
 - Get ready for your satellite before you launch it!
- help yourself help other

how we can help SDGs...?

https://sustainabledevelopment.un.org/sdgs

Satellites Communication

Satellites

Function of Ground Station

- Pointing to a satellite (Satellite tracking)
- Send telecommand to satellite
- Receive telemetry/mission data from satellite
- Process RF signal (Mod/Demodulation, Coding/Decoding)

Limitation of Communication Time

- Limited communication time window in LEO
- Average communication time = 40 minutes/day
- Require long time to download payload data

40 min/ 1day [10min x 1 pass x 4 times]

Antenna Sharing

Increase the number of tracking antennas

By connecting more antenna

Time Resolution Increases!

Advantage of Many Antennas

1 Satellite with 1 Antenna 35-65 Min / day

Many Antenna

1 Satellite with 7 Antenna 145 Min / day

Time resolution increase up to 3 time!!

A solution: StellarStation

A cloud-based software platform that connects satellite operators with antenna owners, solving both the problem of insufficient satellite access time and unused antenna idle time.

The process is simple:

- Share your antenna's idling time and get credits.
- Use your credits to access other antennas around the globe.
- Exchange your credits for cash, or buy additional credits for even more antenna access time.

Graphical User Interface

A new standard for satellite ground stations

- Flagship product, StellarStation. Reshape the satellite operation scene in three major ways:
- Shifting the paradigm to antenna sharing, opening up large numbers of antennas for use and dramatically increasing access
- 2. Solidifying satellite communications into a standardized system so that this increased access can be seamlessly utilized
- 3. Creating a real-time transmission environment for satellites, thus lowering the barrier to entry on satellite operations

space development for everyone

 Building this new ecosystem for ground station networks, we hope to open the door for previously unachievable space development.

Space for everyone!

StellarStation Amateur

- Built on the StellarStation platform,
 StellarStation Amateur provides free LEOP support for amateur UHF band satellites.
- Use StellarStation Amateur to access invaluable telemetry data and schedule passes using member worldwide antenna network during a critical phase of launch and satellite operations.

İTÜ-SSDTL VHF/UHF GS

ANTENNA

Additional Equipment for Antenna Sharing

SP1200 Main Unit

Cable 1

İTÜ-SSDTL COMM LAB with StellarStation

GSN Device

Front Panel

Rear Panel

Receiver

- Satellite downlink signal reception
- Output in IQ data (raw data)
- Centralized demodulation and decoding are done by software defined radio (SDR) at Central Server.
- TLM transfer
 - Transfer IQ data or processed data to Central Server
- Transmitter (optional)
 - Satellite uplink signal transmission
 - Encoded and modulated IQ data from Centralized SDR at Central server and transmits uplink signal to satellite.

How use our GS network?

Go to: https://www.stellarstation.com/amateur and Sign up for an account

Select satellite and download data

Latest Telemetry 2 days of tracking left
i How to decode the IQ data

Status	AOS (Local Time)	LOS (Local Time)	Duration	Max Elevation	Ground Station	
Upcoming	2018/06/19 13:09	2018/06/19 13:19	09:30	73°	Tokyo	Scheduled
Upcoming	2018/06/18 14:26	2018/06/18 14:35	08:49	21°	Tokyo	Scheduled
Upcoming	2018/06/18 12:51	2018/06/18 13:00	09:02	22°	Tokyo	Click for download
Downlinked	2018/06/17 14:07	2018/06/17 14:16	09:30	82°	Tokyo	Download
Downlinked	2018/06/17 06:09	2018/06/17 06:18	09:09	28°	Tokyo	Download
Downlinked	2018/06/16 15:23	2018/06/16 15:32	08:30	16°	Tokyo	Download
Downlinked	2018/06/16 13:48	2018/06/16 13:58	09:11	27°	Tokyo	Download

Use web based GUI to:

- Download telemetry (Raw Data) from satellites
 - See available passes across the world
- Demodulate / Decode in the cloud and view the Telemetry in browser.*

* To be available

Re-processing satellite downlink data

SDR#

GNU Radio

The satellite downlink data can be re-play and processing by using **SDR#** and **GNU radio**

* To be available

21

Downloaded Data

YM1RAS --> TA2MKA

18/08/1976 03:54:02

D:\Amateurfunk\UBAKUSAT\ubakusat_12052018_0458.kss

How to join the Global Antenna Sharing Project with your Antenna

- Contact us to get a template of MoU.
- Review the MoU and make revisions that you deem necessary.
- Fill out Antenna Configuration
 Questionnaire: https://goo.gl/forms/FNYyp
 PrzHNR1V5vu2
- A Block Diagram of your ground station is required to be sent.

Further Benefits

UNISEC-Global provides Information and help on:

- How to operate a satellite
- Regulations and frequency coordination
- Ground Station Network Access
- Frequency Sharing

WHAT?

- How can ease and increase participation in the GS network
- Interaction with others (Satnogs!)
- Other points to consider?

Questions? Thank you

Contact

Prof.Dr. Alim Rüstem ASLAN
Istanbul Technical University
Department of Space Engineering
+90532 480 3449
aslanr@itu.edu.tr
usttl.itu.edu.tr

C/O UNISEC Office
Central Yayoi 2F, 2-3-2 Yayoi, Bunkyo-ku,
Tokyo 113-0032, Japan
TEL: +81-3-5800-6645

Email: secretariat@unisec-global.org www.unisec-global.org

