The 14th CanSat / CubeSat Leader Training Program (CLTP14) – *Mission Design*

Derrick Tebusweke

UNISEC Global August 19 – 29 Nihon University

The 60th Virtual UNISEC Global Meeting 20/09/2025

Contents

- 1. Background
- 2. Introduction
- 3. Mission Design
- 4. Lessons Learned
- 5. End

1. Background

Bio:

Derrick Tebusweke Space Systems Engineering Researcher Uganda

Msc. Electrical and Space Systems Engineering | Kyutech | Japan | BIRDS5 Project Bsc. Electrical Engineering | Makerere University | Uganda

Position:

2025 – Research Associate in CubeSats | Northumbria University | UK | ALIGN Mission

2022 – Power System Engineer | Astroscale Limited | UK | ELSA-M Mission

Research Interests:

Nanosatellites, Spacecraft Power Systems, Attitude Determination & Control and Space Environmental Testing

1U (Two) and 2U © BIRDS5 Project

6U (Two) © NU

Medium-sized © Astroscale

2. Introduction

CLTP Overview:

Full cycle satellite development training: initial design – launch and operation - utilizing a
 HeptaSat kit

3. Mission Design 3.0 Step 0: Overview of Systems Design

3. Mission Design 3.0 Step 0: Overview of Systems Design

Model-Based System Engineering Design

3 Important Views In Mission Design

2. Mission Design2.1 Step 1: Requirement Development Example

Example of our group project mission idea

1. User Needs/Background

- Urban areas are increasingly affected by climate change, experiencing health hazards from smog, flash floods, and droughts.
- Currently, limited data is available to mitigate and to provide effective early-warning and risk management for these hazards.

User needs:

Crude and obscure

3. Mission Design

3.1 Step 1: Requirement Development Example...

How can we achieve such a mission?

Α

Use ground sensors and terrestrial networks for monitoring?

В

Launch satellite, get data and send it back?

C

Launch a drone, get data and send it back?

3. Mission Design3.1 Step 1: Requirement Development

- 2 Conduct an **Operation Scenario**
- A: Terrestrial networks are costly in terms of internet data

- B: Satellite orbit is very high, cloud mapping possible, bights resolution, many revisit times
- C: 1: "c: ed coverage

Note the functional and physical elements (HW, SW) needed

The CCM mission is a coordinated 2-satellite CubeSat mission designed to provide valuable atmospheric and environmental observations, with a focus on urban smog, cloud formation (especially cloud bursts), and flood-related weather events.

Each 1U CubeSat carries sensors chosen to measure key parameters for smog and extreme weather, enabling classification and early-warning capabilities:

3. Mission Design3.2 Step 2: System Design from Operational View

3 Create Mission Goal / Objective

Mission Goal Statement Template

[MG-1] To _____ By ____ Using

- To: [Overall intent statement]
- Ey: [Process statement]
- Using [Methodology statement]

To keep traceability

Example: CCM CubeSat Mission

2.1 Mission Goal/Objective

HEPTA-SAT TRAINING

- MG1. Demonstrate <u>multisensor</u> fusion in a CubeSat for climate monitoring
- MG2. Measure temperature of clouds and urban surfaces
- MG3. Demonstrate Intersatellite link fo integrated sensing.

3. Mission Design 3.2 Step 2: System Design from Operational View

4 Create A Concept Sketch:

MIZU Mission (Monitoring of Irrigation Zones Using satellites &

Purpose:

- Shows interrelationships between the systems:
 - Launcher, satellite, ground station, operator, etc
- Derives necessary functions:
 - E.g Data uplink/downlink

3. Mission Design 3.2 Step 2: System Design from Operational View

5 Create Success Criteria:

Example: CCM CubeSat Mission

3. Suc	HEPTA-SAT TRAINING			
Success Level	No.	Mission Success Criteria	Verification Method	
	MG-1	Successfully connect the sensors	Compare satellite	
Minimum Success	MG-2	Measure temperature of clouds and urban surfaces	data to ground sensors and existing	
	MG-3	Measure distance between fixed satellites	satellite platforms.	
	MG-1	Gather data for distance and thermal sensors	Compare satellite	
Full Success	MG-2	Classify smog vs. dense cloud	data to ground sensors and existing	
	MG-3	Measure relative distance between CubeSats	satellite platforms.	
	MG-1	Demonstrate data fusion from both satellites	Compare satellite	
Advanced Success	MG-2	Detect extreme cloud events (cloud bursts)	data to ground sensors and existing	
	MG-3	Cross-validate measurements from both satellites	satellite platforms.	

Key:

- Minimum Success: must achieve condition to admit mission success
- Full Success: condition you can admit the mission is success
- Advanced Success: condition which you want to do but might be difficult due to cost, time, skill, etc
- Verification Method: How to verify mission success

3. Mission Design3.2 Step 2: System Design from Operational View

6 Create A Flowchart / Sequence Diagram of The Sequence Between Satellite and Ground Station:

 Get HK Data (Health, battery, temperature).

 Acquire IR Distance from sensor.

- Get IR Thermal Image from sensor.
- Get Camera and GPS data.
- Downlink Mission Data via Xbee (2.4 GHz, 250 kbps)

Sensor Description:

- IR Distance Sensor:
 - Detects thick clouds
- IR Thermal Imager Sensor:
 - Cloud temperature
- Camera and GPS:
 - Visual and geotagging

3. Mission Design 3.3 Step 3: System Design from Functional View

7 Create A Function Decomposition Diagram:

Purpose:

- Identifies functions and components from features.
 - Operational Requirement -> Feature
 - System Requirements -> Function, Component
- Easy to understand relationship between features, functions and components.

3. Mission Design 3.4 Step 4: System Design from Physical View

8 Create A Block System Diagram: Example: CCM CubeSat Mission

Purpose:

 Represent how components are connected to each other and with other interfaces in a model diagram

3. Mission Design 3.5 Step 5: Mission Design Review (MDR)

9 Presentation of Mission Feasibility

3. Mission Design3.6 Step 6: Component Selection

Create a Components List: Example: CCM CubeSat Mission Components List

No.	Components	Model	URL	Where to Get	Qty	Unit Price	Total
1	IR Thermal Sensor	AMG8833	https://akizukidenshi.com/catalog/g/g1167 37/	Akihabara Market	1	3980	¥ 3,980.0
2	IR Distance Sensor	GP2Y0A02YK	https://akizukidenshi.com/catalog/g/g1031 58/	Akihabara Market	1	980	¥ 9 980.0
3	Air Humidifier	GB/T23332-2009		Akihabara Market	1	2980	¥ 2,980.0
4	Jumper Wires				1	0	¥ -
	TOTAL (JPY)						¥ 7,940.0

Key parameters from Components Datasheets:

Level	No.	Parameter	Point
	1	Operating Voltage	Voltage input range
Selection	2	Interface	Communicatio n interface
	3	Power Consumption	Power draw
	4	Circuit	Elements necessary for operation
Implementation	5	Circuit & Pin arrangement	Pin Interface
	6	Package	Parts size

3. Mission Design 3.7 Step 7: Experimental Setup / Breadboarding

Connect procured components to achieve the mission: Example: CCM CubeSat Mission IR Thermal Sensor Integration Test

Example: TerraQuak CubeSat Mission Breadboarding

Example: CCM CubeSat Mission IR Thermal Sensor Integration Test

Integration Methodology:

 Keep and add components systematically.

3. Mission Design 3.8 Step 8: Experimental Source Code

1 2

Use version control software like GitHub

Integration Methodology:

Keep and test software systematically.

3. Mission Design 3.9 Step 9: Preliminary Design Review (PDR)

1 3

Final Project Presentation and Graduation to Teaching Assistants (Green T-shirts) urpose:

 Validate the system-level design against requirements.

Example: CCM CubeSat Mission IR Distance Sensor Integration Test

3. Mission Design3.10 Step 10: Schedule Management

1 4

Create a Schedule:

Example: CCM CubeSat Mission Scedule

Action Hom	Person in charge	22/08/2025				26/08/2025			
Action Item		9	12	15	18	9	12	15	18
Mission Feasibility	All								
Sensor Selection	Derrick, Bansi								
System Modeling	Marloun, Derrick								
System integration	All								
System verification	Rizwan								
Prepare final presentation	All								

Important:

 Should be a living document drafted at the project start

3. Mission Design 3.11 Final Projects Overview

No.	Mission	Mission Overview	Members	Teaching Assistants	
1	AtmoHEPTA	In-Situ Atmospheric Mass Density Detection	Mohammed, Essien, Yang	Nan, Yuto, Nagisa	
2	Climate Change Monitoring (CCM) CubeSat Mission	To provide valuable atmospheric and environmental observations, with a focus on urban smog, cloud formation, and flood-related weather events.	Rizwan, Marloun, Bansi, Derrick	Aki, Yusuke	
3	MIZU	Monitoring of Irrigation Zones Using satellites & IoT)	Phanish, Ojas, Shohei, Joseph	Debrupa, Yuzuki	
4	TerraQuak	To detect post-earthquake affected buildings susceptible to collapsing due to structural damage using satellite IoT technology.	Samir, Bonny, Marian, Selma	Nicki Leon Broichhausen	
Teaching Practice					
1	Heat stroke alert System - Sat	To save people from heat strokes	Shinichi, Hiroshi. Akiko and Shizuka	Selma, Joseph, Ojas	
2	Thermal - Sat	Surface Thermal Environment Mapping Satellite	Ito, Sakai , Tsukuda, Kyue	Yang, Shohei, Marloun, Marian	
3	Bare Naked Bear - Sat	Bear monitoring	Mayu, Kazuma, Yuya, Tmoaki	Bonny, Rizwan, Derrick	
4	Flood - Sat	Water level measurement to Flood detection	Emily, Sakura, Makiko, Iwasaki, Mizusaki	Essien, Samir, Bansi, Phanish, Mohammed	

4. Lessons Learned

- During breadboarding, ensure component pins are fully inserted in breadboard.
- Easy to learn with an extra mission
- Have a dedicated mission board to handle missions.

Thank You! Any Question?